本文整理汇总了C++中RectangleTree::Parent方法的典型用法代码示例。如果您正苦于以下问题:C++ RectangleTree::Parent方法的具体用法?C++ RectangleTree::Parent怎么用?C++ RectangleTree::Parent使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类RectangleTree
的用法示例。
在下文中一共展示了RectangleTree::Parent方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: DeletePoint
bool RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType>::
DeletePoint(const size_t point)
{
// It is possible that this will cause a reinsertion, so we need to handle the
// levels properly.
RectangleTree* root = this;
while (root->Parent() != NULL)
root = root->Parent();
std::vector<bool> lvls(root->TreeDepth());
for (size_t i = 0; i < lvls.size(); i++)
lvls[i] = true;
if (numChildren == 0)
{
for (size_t i = 0; i < count; i++)
{
if (points[i] == point)
{
localDataset->col(i) = localDataset->col(--count); // Decrement count.
points[i] = points[count];
// This function wil ensure that minFill is satisfied.
CondenseTree(dataset->col(point), lvls, true);
return true;
}
}
}
for (size_t i = 0; i < numChildren; i++)
if (children[i]->Bound().Contains(dataset->col(point)))
if (children[i]->DeletePoint(point, lvls))
return true;
return false;
}
示例2: RemoveNode
bool RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
RemoveNode(const RectangleTree* node, std::vector<bool>& relevels)
{
for (size_t i = 0; i < numChildren; i++)
{
if (children[i] == node)
{
if (!auxiliaryInfo.HandleNodeRemoval(this, i))
{
children[i] = children[--numChildren]; // Decrement numChildren.
}
RectangleTree* tree = this;
while (tree != NULL)
{
tree->numDescendants -= node->numDescendants;
tree = tree->Parent();
}
CondenseTree(arma::vec(), relevels, false);
return true;
}
bool contains = true;
for (size_t j = 0; j < node->Bound().Dim(); j++)
contains &= Child(i).Bound()[j].Contains(node->Bound()[j]);
if (contains)
if (children[i]->RemoveNode(node, relevels))
return true;
}
return false;
}
示例3: DeletePoint
bool RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
DeletePoint(const size_t point, std::vector<bool>& relevels)
{
if (numChildren == 0)
{
for (size_t i = 0; i < count; i++)
{
if (points[i] == point)
{
if (!auxiliaryInfo.HandlePointDeletion(this, i))
points[i] = points[--count];
RectangleTree* tree = this;
while (tree != NULL)
{
tree->numDescendants--;
tree = tree->Parent();
}
// This function will ensure that minFill is satisfied.
CondenseTree(dataset->col(point), relevels, true);
return true;
}
}
}
for (size_t i = 0; i < numChildren; i++)
if (children[i]->Bound().Contains(dataset->col(point)))
if (children[i]->DeletePoint(point, relevels))
return true;
return false;
}
示例4: maxNumChildren
RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType>::
RectangleTree(
const RectangleTree& other,
const bool deepCopy) :
maxNumChildren(other.MaxNumChildren()),
minNumChildren(other.MinNumChildren()),
numChildren(other.NumChildren()),
children(maxNumChildren + 1),
parent(other.Parent()),
begin(other.Begin()),
count(other.Count()),
maxLeafSize(other.MaxLeafSize()),
minLeafSize(other.MinLeafSize()),
bound(other.bound),
splitHistory(other.SplitHistory()),
parentDistance(other.ParentDistance()),
dataset(new MatType(*other.dataset)),
ownsDataset(true),
points(other.Points()),
localDataset(NULL)
{
if (deepCopy)
{
if (numChildren > 0)
{
for (size_t i = 0; i < numChildren; i++)
{
children[i] = new RectangleTree(*(other.Children()[i]));
}
}
else
{
localDataset = new MatType(other.LocalDataset());
}
}
else
{
children = other.Children();
arma::mat& otherData = const_cast<arma::mat&>(other.LocalDataset());
localDataset = &otherData;
}
}
示例5: maxNumChildren
RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
RectangleTree(
const RectangleTree& other,
const bool deepCopy,
RectangleTree* newParent) :
maxNumChildren(other.MaxNumChildren()),
minNumChildren(other.MinNumChildren()),
numChildren(other.NumChildren()),
children(maxNumChildren + 1, NULL),
parent(deepCopy ? newParent : other.Parent()),
begin(other.Begin()),
count(other.Count()),
numDescendants(other.numDescendants),
maxLeafSize(other.MaxLeafSize()),
minLeafSize(other.MinLeafSize()),
bound(other.bound),
parentDistance(other.ParentDistance()),
dataset(deepCopy ?
(parent ? parent->dataset : new MatType(*other.dataset)) :
&other.Dataset()),
ownsDataset(deepCopy && (!parent)),
points(other.points),
auxiliaryInfo(other.auxiliaryInfo, this, deepCopy)
{
if (deepCopy)
{
if (numChildren > 0)
{
for (size_t i = 0; i < numChildren; i++)
children[i] = new RectangleTree(other.Child(i), true, this);
}
}
else
children = other.children;
}
示例6: if
void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
CondenseTree(const arma::vec& point,
std::vector<bool>& relevels,
const bool usePoint)
{
// First delete the node if we need to. There's no point in shrinking the
// bound first.
if (IsLeaf() && count < minLeafSize && parent != NULL)
{
// We can't delete the root node.
for (size_t i = 0; i < parent->NumChildren(); i++)
{
if (parent->children[i] == this)
{
// Decrement numChildren.
if (!auxiliaryInfo.HandleNodeRemoval(parent, i))
{
parent->children[i] = parent->children[--parent->NumChildren()];
}
// We find the root and shrink bounds at the same time.
bool stillShrinking = true;
RectangleTree* root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = parent;
while (root != NULL)
{
root->numDescendants -= numDescendants;
root = root->Parent();
}
stillShrinking = true;
root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->AuxiliaryInfo().UpdateAuxiliaryInfo(root);
// Reinsert the points at the root node.
for (size_t j = 0; j < count; j++)
root->InsertPoint(points[j], relevels);
// This will check the minFill of the parent.
parent->CondenseTree(point, relevels, usePoint);
// Now it should be safe to delete this node.
SoftDelete();
return;
}
}
// Control should never reach here.
assert(false);
}
else if (!IsLeaf() && numChildren < minNumChildren)
{
if (parent != NULL)
{
// The normal case. We need to be careful with the root.
for (size_t j = 0; j < parent->NumChildren(); j++)
{
if (parent->children[j] == this)
{
// Decrement numChildren.
if (!auxiliaryInfo.HandleNodeRemoval(parent,j))
{
parent->children[j] = parent->children[--parent->NumChildren()];
}
size_t level = TreeDepth();
// We find the root and shrink bounds at the same time.
bool stillShrinking = true;
RectangleTree* root = parent;
while (root->Parent() != NULL)
{
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = root->Parent();
}
if (stillShrinking)
stillShrinking = root->ShrinkBoundForBound(bound);
root = parent;
while (root != NULL)
{
root->numDescendants -= numDescendants;
root = root->Parent();
}
//.........这里部分代码省略.........