本文整理汇总了C++中RectangleTree::IsLeaf方法的典型用法代码示例。如果您正苦于以下问题:C++ RectangleTree::IsLeaf方法的具体用法?C++ RectangleTree::IsLeaf怎么用?C++ RectangleTree::IsLeaf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类RectangleTree
的用法示例。
在下文中一共展示了RectangleTree::IsLeaf方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: while
size_t RectangleTree<MetricType, StatisticType, MatType, SplitType,
DescentType, AuxiliaryInformationType>::TreeDepth() const
{
int n = 1;
RectangleTree* currentNode = const_cast<RectangleTree*> (this);
while (!currentNode->IsLeaf())
{
currentNode = currentNode->children[0];
n++;
}
return n;
}
示例2: if
void RectangleTree<MetricType, StatisticType, MatType, SplitType, DescentType,
AuxiliaryInformationType>::
DualTreeTraverser<RuleType>::Traverse(RectangleTree& queryNode,
RectangleTree& referenceNode)
{
// Increment the visit counter.
++numVisited;
// Store the current traversal info.
traversalInfo = rule.TraversalInfo();
// We now have four options.
// 1) Both nodes are leaf nodes.
// 2) Only the reference node is a leaf node.
// 3) Only the query node is a leaf node.
// 4) Niether node is a leaf node.
// We go through those options in that order.
if (queryNode.IsLeaf() && referenceNode.IsLeaf())
{
// Evaluate the base case. Do the query points on the outside so we can
// possibly prune the reference node for that particular point.
for (size_t query = 0; query < queryNode.Count(); ++query)
{
// Restore the traversal information.
rule.TraversalInfo() = traversalInfo;
const double childScore = rule.Score(queryNode.Point(query),
referenceNode);
if (childScore == DBL_MAX)
continue; // We don't require a search in this reference node.
for(size_t ref = 0; ref < referenceNode.Count(); ++ref)
rule.BaseCase(queryNode.Point(query), referenceNode.Point(ref));
numBaseCases += referenceNode.Count();
}
}
else if (!queryNode.IsLeaf() && referenceNode.IsLeaf())
{
// We only need to traverse down the query node. Order doesn't matter here.
for (size_t i = 0; i < queryNode.NumChildren(); ++i)
{
// Before recursing, we have to set the traversal information correctly.
rule.TraversalInfo() = traversalInfo;
++numScores;
if (rule.Score(queryNode.Child(i), referenceNode) < DBL_MAX)
Traverse(queryNode.Child(i), referenceNode);
else
numPrunes++;
}
}
else if (queryNode.IsLeaf() && !referenceNode.IsLeaf())
{
// We only need to traverse down the reference node. Order does matter
// here.
// We sort the children of the reference node by their scores.
std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
for (size_t i = 0; i < referenceNode.NumChildren(); i++)
{
rule.TraversalInfo() = traversalInfo;
nodesAndScores[i].node = &(referenceNode.Child(i));
nodesAndScores[i].score = rule.Score(queryNode,
*(nodesAndScores[i].node));
nodesAndScores[i].travInfo = rule.TraversalInfo();
}
std::sort(nodesAndScores.begin(), nodesAndScores.end(), nodeComparator);
numScores += nodesAndScores.size();
for (size_t i = 0; i < nodesAndScores.size(); i++)
{
rule.TraversalInfo() = nodesAndScores[i].travInfo;
if (rule.Rescore(queryNode, *(nodesAndScores[i].node),
nodesAndScores[i].score) < DBL_MAX)
{
Traverse(queryNode, *(nodesAndScores[i].node));
}
else
{
numPrunes += nodesAndScores.size() - i;
break;
}
}
}
else
{
// We need to traverse down both the reference and the query trees.
// We loop through all of the query nodes, and for each of them, we
// loop through the reference nodes to see where we need to descend.
for (size_t j = 0; j < queryNode.NumChildren(); j++)
{
// We sort the children of the reference node by their scores.
std::vector<NodeAndScore> nodesAndScores(referenceNode.NumChildren());
for (size_t i = 0; i < referenceNode.NumChildren(); i++)
{
rule.TraversalInfo() = traversalInfo;
nodesAndScores[i].node = &(referenceNode.Child(i));
nodesAndScores[i].score = rule.Score(queryNode.Child(j),
*nodesAndScores[i].node);
//.........这里部分代码省略.........