本文整理汇总了C++中Rect::BottomLeft方法的典型用法代码示例。如果您正苦于以下问题:C++ Rect::BottomLeft方法的具体用法?C++ Rect::BottomLeft怎么用?C++ Rect::BottomLeft使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Rect
的用法示例。
在下文中一共展示了Rect::BottomLeft方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SnapLineToDevicePixelsForStroking
void
StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
const ColorPattern& aColor,
const StrokeOptions& aStrokeOptions)
{
if (aRect.IsEmpty()) {
return;
}
Point p1 = aRect.TopLeft();
Point p2 = aRect.BottomLeft();
SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
p1 = aRect.BottomLeft();
p2 = aRect.BottomRight();
SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
p1 = aRect.TopLeft();
p2 = aRect.TopRight();
SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
p1 = aRect.TopRight();
p2 = aRect.BottomRight();
SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget);
aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
}
示例2: Rect
Rect
Matrix::TransformBounds(const Rect &aRect) const
{
int i;
Point quad[4];
Float min_x, max_x;
Float min_y, max_y;
quad[0] = *this * aRect.TopLeft();
quad[1] = *this * aRect.TopRight();
quad[2] = *this * aRect.BottomLeft();
quad[3] = *this * aRect.BottomRight();
min_x = max_x = quad[0].x;
min_y = max_y = quad[0].y;
for (i = 1; i < 4; i++) {
if (quad[i].x < min_x)
min_x = quad[i].x;
if (quad[i].x > max_x)
max_x = quad[i].x;
if (quad[i].y < min_y)
min_y = quad[i].y;
if (quad[i].y > max_y)
max_y = quad[i].y;
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
示例3: newRect
// XXX snapToPixels is only valid when snapping for filled
// rectangles and for even-width stroked rectangles.
// For odd-width stroked rectangles, we need to offset x/y by
// 0.5...
void
gfxContext::Rectangle(const gfxRect& rect, bool snapToPixels)
{
Rect rec = ToRect(rect);
if (snapToPixels) {
gfxRect newRect(rect);
if (UserToDevicePixelSnapped(newRect, true)) {
gfxMatrix mat = ThebesMatrix(mTransform);
if (mat.Invert()) {
// We need the user space rect.
rec = ToRect(mat.TransformBounds(newRect));
} else {
rec = Rect();
}
}
}
if (!mPathBuilder && !mPathIsRect) {
mPathIsRect = true;
mRect = rec;
return;
}
EnsurePathBuilder();
mPathBuilder->MoveTo(rec.TopLeft());
mPathBuilder->LineTo(rec.TopRight());
mPathBuilder->LineTo(rec.BottomRight());
mPathBuilder->LineTo(rec.BottomLeft());
mPathBuilder->Close();
}
示例4: PushClip
void
DrawTargetD2D1::PushClipRect(const Rect &aRect)
{
if (!mTransform.IsRectilinear()) {
// Whoops, this isn't a rectangle in device space, Direct2D will not deal
// with this transform the way we want it to.
// See remarks: http://msdn.microsoft.com/en-us/library/dd316860%28VS.85%29.aspx
RefPtr<PathBuilder> pathBuilder = CreatePathBuilder();
pathBuilder->MoveTo(aRect.TopLeft());
pathBuilder->LineTo(aRect.TopRight());
pathBuilder->LineTo(aRect.BottomRight());
pathBuilder->LineTo(aRect.BottomLeft());
pathBuilder->Close();
RefPtr<Path> path = pathBuilder->Finish();
return PushClip(path);
}
PushedClip clip;
Rect rect = mTransform.TransformBounds(aRect);
IntRect intRect;
clip.mIsPixelAligned = rect.ToIntRect(&intRect);
// Do not store the transform, just store the device space rectangle directly.
clip.mBounds = D2DRect(rect);
mPushedClips.push_back(clip);
mDC->SetTransform(D2D1::IdentityMatrix());
mTransformDirty = true;
if (mClipsArePushed) {
mDC->PushAxisAlignedClip(clip.mBounds, clip.mIsPixelAligned ? D2D1_ANTIALIAS_MODE_ALIASED : D2D1_ANTIALIAS_MODE_PER_PRIMITIVE);
}
}
示例5:
void
AppendRectToPath(PathBuilder* aPathBuilder,
const Rect& aRect,
bool aDrawClockwise)
{
if (aDrawClockwise) {
aPathBuilder->MoveTo(aRect.TopLeft());
aPathBuilder->LineTo(aRect.TopRight());
aPathBuilder->LineTo(aRect.BottomRight());
aPathBuilder->LineTo(aRect.BottomLeft());
} else {
aPathBuilder->MoveTo(aRect.TopRight());
aPathBuilder->LineTo(aRect.TopLeft());
aPathBuilder->LineTo(aRect.BottomLeft());
aPathBuilder->LineTo(aRect.BottomRight());
}
aPathBuilder->Close();
}
示例6: Pull
void TopSubMenuItem::Pull()
{
Rect r = GetScreenRect();
if(parentmenu && parentmenu->IsChild() && !parentmenu->submenu)
parentmenu->SetupRestoreFocus();
Point p = r.BottomLeft();
if(GUI_GlobalStyle() >= GUISTYLE_XP)
p += style->pullshift;
SubMenuBase::Pull(this, p, Size(r.Width(), -r.Height()));
if(parentmenu)
parentmenu->SyncState();
}
示例7: EnsureAntiClockwise
ConvexPolygon::ConvexPolygon(const Rect& aRect)
{
if (!aRect.width || !aRect.height) {
return;
}
mPoints.reserve(4);
mPoints.push_back(aRect.BottomRight());
mPoints.push_back(aRect.TopRight());
mPoints.push_back(aRect.TopLeft());
mPoints.push_back(aRect.BottomLeft());
EnsureAntiClockwise();
}
示例8: Rect
Rect Matrix4x4::ProjectRectBounds(const Rect& aRect) const
{
Point4D points[4];
points[0] = ProjectPoint(aRect.TopLeft());
points[1] = ProjectPoint(aRect.TopRight());
points[2] = ProjectPoint(aRect.BottomRight());
points[3] = ProjectPoint(aRect.BottomLeft());
Float min_x = std::numeric_limits<Float>::max();
Float min_y = std::numeric_limits<Float>::max();
Float max_x = -std::numeric_limits<Float>::max();
Float max_y = -std::numeric_limits<Float>::max();
bool foundPoint = false;
for (int i=0; i<4; i++) {
// Only use points that exist above the w=0 plane
if (points[i].HasPositiveWCoord()) {
foundPoint = true;
Point point2d = points[i].As2DPoint();
min_x = min<Float>(point2d.x, min_x);
max_x = max<Float>(point2d.x, max_x);
min_y = min<Float>(point2d.y, min_y);
max_y = max<Float>(point2d.y, max_y);
}
int next = (i == 3) ? 0 : i + 1;
if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
// If the line between two points crosses the w=0 plane, then interpolate a point
// as close to the w=0 plane as possible and use that instead.
Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]);
Point point2d = intercept.As2DPoint();
min_x = min<Float>(point2d.x, min_x);
max_x = max<Float>(point2d.x, max_x);
min_y = min<Float>(point2d.y, min_y);
max_y = max<Float>(point2d.y, max_y);
}
}
if (!foundPoint) {
return Rect(0, 0, 0, 0);
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
示例9: DrawGroupTools
void FormView::DrawGroupTools(Draw& w, const Rect& r)
{
if (!IsLayout())
return;
_groupRect = r;
Point p;
Rect t;
int v;
p = r.TopLeft();
v = (r.BottomLeft().y >= GetRect().Height())
? GetRect().Height() - (GetRect().Height() - r.TopLeft().y) / 2 - 10
: ((r.TopLeft().y < 0)
? r.BottomLeft().y / 2 - 10
: r.CenterLeft().y - 10);
if (p.x >= 20) // left tool
{
t = Rect(Point(r.CenterLeft().x - 10, v), Size(11, 11) );
w.DrawImage(t, _toolLeft[_leftCur]);
}
else
{
t = Rect(Point(2, v), Size(11, 11) );
w.DrawImage(t, _toolLeft[_leftCur]);
}
v = (r.TopLeft().x < 0)
? r.TopRight().x / 2 - 5
: (r.TopRight().x > GetRect().Width()
? GetRect().Width() - (GetRect().Width() - r.TopLeft().x) / 2 - 5
: r.TopCenter().x - 5);
if (p.y >= 20)
{
t = Rect( Point(v, r.TopCenter().y - 10), Size(11, 11) ); // top tool
w.DrawImage(t, _toolTop[_topCur]);
}
else
{
t = Rect( Point(v, 2), Size(11, 11) ); // top tool
w.DrawImage(t, _toolTop[_topCur]);
}
p = r.BottomRight();
v = (p.y >= GetRect().Height())
? GetRect().Height() - (GetRect().Height() - r.TopLeft().y) / 2 - 10
: ((r.TopLeft().y < 0)
? r.BottomLeft().y / 2 - 110
: r.CenterLeft().y - 10);
if (p.x <= GetRect().Width() - 20)
{
t = Rect( Point(r.CenterRight().x, v), Size(11, 11) ); // right tool
w.DrawImage(t, _toolRight[_rightCur]);
}
else
{
t = Rect( Point(GetRect().Width() - 11, v), Size(11, 11) ); // right tool
w.DrawImage(t, _toolRight[_rightCur]);
}
v = (r.TopLeft().x < 0)
? r.TopRight().x / 2 - 5
: (r.TopRight().x > GetRect().Width()
? GetRect().Width() - (GetRect().Width() - r.TopLeft().x) / 2 - 5
: r.TopCenter().x - 5);
if (p.y <= GetRect().Height() - 20)
{
t = Rect( Point(v, r.BottomCenter().y), Size(11, 11) ); // bottom tool
w.DrawImage(t, _toolBottom[_bottomCur]);
}
else
{
t = Rect( Point(v, GetRect().Height() - 11), Size(11, 11) ); // bottom tool
w.DrawImage(t, _toolBottom[_bottomCur]);
}
}
示例10: Float
void
AppendRoundedRectToPath(PathBuilder* aPathBuilder,
const Rect& aRect,
const RectCornerRadii& aRadii,
bool aDrawClockwise)
{
// For CW drawing, this looks like:
//
// ...******0** 1 C
// ****
// *** 2
// **
// *
// *
// 3
// *
// *
//
// Where 0, 1, 2, 3 are the control points of the Bezier curve for
// the corner, and C is the actual corner point.
//
// At the start of the loop, the current point is assumed to be
// the point adjacent to the top left corner on the top
// horizontal. Note that corner indices start at the top left and
// continue clockwise, whereas in our loop i = 0 refers to the top
// right corner.
//
// When going CCW, the control points are swapped, and the first
// corner that's drawn is the top left (along with the top segment).
//
// There is considerable latitude in how one chooses the four
// control points for a Bezier curve approximation to an ellipse.
// For the overall path to be continuous and show no corner at the
// endpoints of the arc, points 0 and 3 must be at the ends of the
// straight segments of the rectangle; points 0, 1, and C must be
// collinear; and points 3, 2, and C must also be collinear. This
// leaves only two free parameters: the ratio of the line segments
// 01 and 0C, and the ratio of the line segments 32 and 3C. See
// the following papers for extensive discussion of how to choose
// these ratios:
//
// Dokken, Tor, et al. "Good approximation of circles by
// curvature-continuous Bezier curves." Computer-Aided
// Geometric Design 7(1990) 33--41.
// Goldapp, Michael. "Approximation of circular arcs by cubic
// polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
// Maisonobe, Luc. "Drawing an elliptical arc using polylines,
// quadratic, or cubic Bezier curves."
// http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
//
// We follow the approach in section 2 of Goldapp (least-error,
// Hermite-type approximation) and make both ratios equal to
//
// 2 2 + n - sqrt(2n + 28)
// alpha = - * ---------------------
// 3 n - 4
//
// where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
//
// This is the result of Goldapp's equation (10b) when the angle
// swept out by the arc is pi/2, and the parameter "a-bar" is the
// expression given immediately below equation (21).
//
// Using this value, the maximum radial error for a circle, as a
// fraction of the radius, is on the order of 0.2 x 10^-3.
// Neither Dokken nor Goldapp discusses error for a general
// ellipse; Maisonobe does, but his choice of control points
// follows different constraints, and Goldapp's expression for
// 'alpha' gives much smaller radial error, even for very flat
// ellipses, than Maisonobe's equivalent.
//
// For the various corners and for each axis, the sign of this
// constant changes, or it might be 0 -- it's multiplied by the
// appropriate multiplier from the list before using.
const Float alpha = Float(0.55191497064665766025);
typedef struct { Float a, b; } twoFloats;
twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise
{ 0, -1 },
{ +1, 0 },
{ 0, +1 } };
twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise
{ 0, -1 },
{ -1, 0 },
{ 0, +1 } };
twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
aRect.BottomRight(), aRect.BottomLeft() };
Point pc, p0, p1, p2, p3;
if (aDrawClockwise) {
aPathBuilder->MoveTo(Point(aRect.X() + aRadii[RectCorner::TopLeft].width,
aRect.Y()));
} else {
aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aRadii[RectCorner::TopRight].width,
//.........这里部分代码省略.........