当前位置: 首页>>代码示例>>C++>>正文


C++ Quaterniond::normalize方法代码示例

本文整理汇总了C++中Quaterniond::normalize方法的典型用法代码示例。如果您正苦于以下问题:C++ Quaterniond::normalize方法的具体用法?C++ Quaterniond::normalize怎么用?C++ Quaterniond::normalize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Quaterniond的用法示例。


在下文中一共展示了Quaterniond::normalize方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: read

  bool VertexCam::read(std::istream& is)
  {
    // first the position and orientation (vector3 and quaternion)
    Vector3d t;
    for (int i=0; i<3; i++){
      is >> t[i];
    }
    Vector4d rc;
    for (int i=0; i<4; i++) {
      is >> rc[i];
    }
    Quaterniond r;
    r.coeffs() = rc;
    r.normalize();


    // form the camera object
    SBACam cam(r,t);

    // now fx, fy, cx, cy, baseline
    double fx, fy, cx, cy, tx;

    // try to read one value
    is >>  fx;
    if (is.good()) {
      is >>  fy >> cx >> cy >> tx;
      cam.setKcam(fx,fy,cx,cy,tx);
    } else{
开发者ID:AIRLab-POLIMI,项目名称:ROAMFREE,代码行数:28,代码来源:types_sba.cpp

示例2: Pose

inline Pose::Pose(const Quaterniond& orientation,
	          const Vector3d& position)
	: m_orientation(orientation)
	, m_position(position)
{
	CHECK(std::fabs(orientation.norm() - 1) < 1e-15)
		<< "Your quaternion is not normalized:"
		<< orientation.norm();
	// Or, one may prefer
	m_orientation.normalize();
}
开发者ID:ivanasz,项目名称:Tiny-Tin-Tin-Examples,代码行数:11,代码来源:pose.cpp

示例3: Quaterniond

TEST(OsgRigidTransformConversionsTests, RigidTransform3dTest)
{
	Quaterniond rotation = Quaterniond(Vector4d::Random());
	rotation.normalize();
	Vector3d translation = Vector3d::Random();

	RigidTransform3d transform = makeRigidTransform(rotation, translation);

	/// Convert to OSG
	std::pair<osg::Quat, osg::Vec3d> osgTransform = toOsg(transform);

	/// Convert back to Eigen and compare with original
	RigidTransform3d resultTransform = fromOsg(osgTransform);
	EXPECT_TRUE(transform.isApprox(resultTransform));
}
开发者ID:ricortiz,项目名称:opensurgsim,代码行数:15,代码来源:OsgRigidTransformConversionsTests.cpp

示例4: setupSBA

void setupSBA(SysSBA &sys)
{
    // Create camera parameters.
    frame_common::CamParams cam_params;
    cam_params.fx = 430; // Focal length in x
    cam_params.fy = 430; // Focal length in y
    cam_params.cx = 320; // X position of principal point
    cam_params.cy = 240; // Y position of principal point
    cam_params.tx = 0;   // Baseline (no baseline since this is monocular)

    // Define dimensions of the image.
    int maxx = 640;
    int maxy = 480;

    // Create a plane containing a wall of points.
    int npts_x = 10; // Number of points on the plane in x
    int npts_y = 5;  // Number of points on the plane in y
    
    double plane_width = 5;     // Width of the plane on which points are positioned (x)
    double plane_height = 2.5;    // Height of the plane on which points are positioned (y)
    double plane_distance = 5; // Distance of the plane from the cameras (z)

    // Vector containing the true point positions.
    vector<Point, Eigen::aligned_allocator<Point> > points;

    for (int ix = 0; ix < npts_x ; ix++)
    {
      for (int iy = 0; iy < npts_y ; iy++)
      {
        // Create a point on the plane in a grid.
        points.push_back(Point(plane_width/npts_x*(ix+.5), -plane_height/npts_y*(iy+.5), plane_distance, 1.0));
      }
    }
    
    // Create nodes and add them to the system.
    unsigned int nnodes = 5; // Number of nodes.
    double path_length = 3; // Length of the path the nodes traverse.
    
    unsigned int i = 0, j = 0;
    
    for (i = 0; i < nnodes; i++)
    { 
      // Translate in the x direction over the node path.
      Vector4d trans(i/(nnodes-1.0)*path_length, 0, 0, 1);
            
      // Don't rotate.
      Quaterniond rot(1, 0, 0, 0);
      rot.normalize();
      
      // Add a new node to the system.
      sys.addNode(trans, rot, cam_params, false);
    }
        
    // Set the random seed.
    unsigned short seed = (unsigned short)time(NULL);
    seed48(&seed);
    double ptscale = 1.0;
        
    // Add points into the system, and add noise.
    for (i = 0; i < points.size(); i++)
    {
      // Add up to .5 points of noise.
      Vector4d temppoint = points[i];
      temppoint.x() += ptscale*(drand48() - 0.5);
      temppoint.y() += ptscale*(drand48() - 0.5);
      temppoint.z() += ptscale*(drand48() - 0.5);
      sys.addPoint(temppoint);
    }
    
    Vector2d proj;
    
    // Project points into nodes.
    for (i = 0; i < points.size(); i++)
    {
      for (j = 0; j < sys.nodes.size(); j++)
      {
        // Project the point into the node's image coordinate system.
        sys.nodes[j].setProjection();
        sys.nodes[j].project2im(proj, points[i]);
        
        // If valid (within the range of the image size), add the monocular 
        // projection to SBA.
        if (proj.x() > 0 && proj.x() < maxx-1 && proj.y() > 0 && proj.y() < maxy-1)
        {
          sys.addMonoProj(j, i, proj);
          //printf("Adding projection: Node: %d Point: %d Proj: %f %f\n", j, i, proj.x(), proj.y());
        }
      }
    }
    
    // Add noise to node position.
    
    double transscale = 1.0;
    double rotscale = 0.2;
    
    // Don't actually add noise to the first node, since it's fixed.
    for (i = 1; i < sys.nodes.size(); i++)
    {
      Vector4d temptrans = sys.nodes[i].trans;
      Quaterniond tempqrot = sys.nodes[i].qrot;
//.........这里部分代码省略.........
开发者ID:IDSCETHZurich,项目名称:gajanLocal,代码行数:101,代码来源:sba_node_test.cpp

示例5: main


//.........这里部分代码省略.........
    {
        ROS_ERROR("Cannot connect to frame grabber: %s", camera_id.c_str()) ;
        return 0 ;
    }

    c = 0 ;

    // move robot and grab images

    robot_helpers::MoveRobot mv ;
    mv.setServoMode(false);

    tf::TransformListener listener(ros::Duration(1.0));

    double cx, cy, fx, fy ;

    while ( c < nStations )
    {
        // move the robot to the next position

        double X = minX + (maxX - minX)*(rand()/(double)RAND_MAX) ;
        double Y = minY + (maxY - minY)*(rand()/(double)RAND_MAX) ;
        double Z = minZ + (maxZ - minZ)*(rand()/(double)RAND_MAX) ;

        const double qscale = 0.3 ;
        double qx = qscale * (rand()/(double)RAND_MAX - 0.5) ;
        double qy = qscale * (rand()/(double)RAND_MAX - 0.5) ;
        double qz = qscale * (rand()/(double)RAND_MAX - 0.5) ;
        double qw = qscale * (rand()/(double)RAND_MAX - 0.5) ;

        Quaterniond q = robot_helpers::lookAt(orient, M_PI) ;

       q = Quaterniond(q.x() + qx, q.y() + qy, q.z() + qz, q.w() + qw) ;
       q.normalize();

        if ( fixedCam ) {

            addPlaneToCollisionModel(armName, 0.3, q) ;
            if ( !robot_helpers::moveGripper(mv, armName, Eigen::Vector3d(X, Y, Z), q) ) continue ;
            robot_helpers::resetCollisionModel() ;
        }
        else
        {
            // for an Xtion on arm the bounding box indicates the target position and the orient the lookAt direction
            // so move back the sensor far enough so that the target is visible. This is currently hardcoded.

            Vector3d dir = q*Vector3d(0, 0, 1) ;
            Vector3d c = Vector3d(X, Y, Z) - 0.9*dir ;

            trajectory_msgs::JointTrajectory traj ;
            if ( !robot_helpers::planXtionToPose(armName, c, q, traj) ) continue ;

            mv.execTrajectory(traj) ;

        }

        image_geometry::PinholeCameraModel cm ;
        cv::Mat clr, depth ;

        ros::Time ts ;

        grabber.grab(clr, depth, ts, cm) ;

        // camera intrinsics. we assume a rectfied and calibrated frame

        cx = cm.cx() ;
开发者ID:CloPeMa,项目名称:clopema_certh_ros,代码行数:67,代码来源:handeye_calibration.cpp

示例6: setupSBA

void setupSBA(SysSBA &sba)
{
    // Create camera parameters.
    frame_common::CamParams cam_params;
    cam_params.fx = 430; // Focal length in x
    cam_params.fy = 430; // Focal length in y
    cam_params.cx = 320; // X position of principal point
    cam_params.cy = 240; // Y position of principal point
    cam_params.tx = -30; // Baseline (no baseline since this is monocular)

    // Create a plane containing a wall of points.
    Plane plane0, plane1;
    plane0.resize(3, 2, 10, 5);
    
    plane1 = plane0;
    plane1.translate(0.1, 0.05, 0.0);
    
    plane1.rotate(PI/4.0, 1, 0, 0);
    plane1.translate(0.0, 0.0, 7.0);
    
    
    plane0.rotate(PI/4.0, 1, 0, 0);
    plane0.translate(0.0, 0.0, 7.0);
    
    //plane1.translate(0.05, 0.0, 0.05);
    
    // Create nodes and add them to the system.
    unsigned int nnodes = 2; // Number of nodes.
    double path_length = 2; // Length of the path the nodes traverse.

    // Set the random seed.
    unsigned short seed = (unsigned short)time(NULL);
    seed48(&seed);
    
    for (int i = 0; i < nnodes; i++)
    { 
      // Translate in the x direction over the node path.
      Vector4d trans(i/(nnodes-1.0)*path_length, 0, 0, 1);
            
#if 0
      if (i >= 0)
	    {
	      // perturb a little
	      double tnoise = 0.5;	// meters
	      trans.x() += tnoise*(drand48()-0.5);
	      trans.y() += tnoise*(drand48()-0.5);
	      trans.z() += tnoise*(drand48()-0.5);
	    }
#endif

      // Don't rotate.
      Quaterniond rot(1, 0, 0, 0);
#if 0
      if (i > 0)
	    {
	      // perturb a little
	      double qnoise = 0.1;	// meters
	      rot.x() += qnoise*(drand48()-0.5);
	      rot.y() += qnoise*(drand48()-0.5);
	      rot.z() += qnoise*(drand48()-0.5);
	    }
#endif
      rot.normalize();
      
      // Add a new node to the system.
      sba.addNode(trans, rot, cam_params, false);
    }
    
    Vector3d imagenormal(0, 0, 1);
    
    Matrix3d covar0;
    covar0 << sqrt(imagenormal(0)), 0, 0, 0, sqrt(imagenormal(1)), 0, 0, 0, sqrt(imagenormal(2));
    Matrix3d covar;
    
    Quaterniond rotation;
    Matrix3d rotmat;
    
    // Project points into nodes.
    addPointAndProjection(sba, plane0.points, 0);
    addPointAndProjection(sba, plane1.points, 1);
    
    int offset = plane0.points.size();
    
    Vector3d normal0 = sba.nodes[0].qrot.toRotationMatrix().transpose()*plane0.normal; 
    Vector3d normal1 = sba.nodes[1].qrot.toRotationMatrix().transpose()*plane1.normal; 
    
    printf("Normal: %f %f %f -> %f %f %f\n", plane0.normal.x(), plane0.normal.y(), plane0.normal.z(), normal0.x(), normal0.y(), normal0.z());
    printf("Normal: %f %f %f -> %f %f %f\n", plane1.normal.x(), plane1.normal.y(), plane1.normal.z(), normal1.x(), normal1.y(), normal1.z());
    
    for (int i = 0; i < plane0.points.size(); i++)
    {
      sba.addPointPlaneMatch(0, i, normal0, 1, i+offset, normal1);

      Matrix3d covar;
      covar << 0.1, 0, 0,
                0, 0.1, 0, 
          	0, 0, 0.1;
      sba.setProjCovariance(0, i+offset, covar);
      sba.setProjCovariance(1, i, covar);
    }
//.........这里部分代码省略.........
开发者ID:IDSCETHZurich,项目名称:gajanLocal,代码行数:101,代码来源:single_plane_vis.cpp

示例7: setupSBA

void setupSBA(SysSBA &sys)
{
    // Create camera parameters.
    frame_common::CamParams cam_params;
    cam_params.fx = 430; // Focal length in x
    cam_params.fy = 430; // Focal length in y
    cam_params.cx = 320; // X position of principal point
    cam_params.cy = 240; // Y position of principal point
    cam_params.tx = -30; // Baseline (no baseline since this is monocular)

    // Define dimensions of the image.
    int maxx = 640;
    int maxy = 480;

    // Create a plane containing a wall of points.
    Plane middleplane;
    middleplane.resize(3, 2, 10, 5);
    middleplane.translate(0.0, 0.0, 7.0);
    
    Plane leftplane;
    leftplane.resize(1, 2, 6, 12);
    //    leftplane.rotate(-PI/4.0, 0, 1, 0);
    leftplane.translate(0, 0, 7.0);
    
    Plane rightplane;
    rightplane.resize(1, 2, 6, 12);
    //    rightplane.rotate(PI/4.0, 0, 1, 0);
    rightplane.translate(2, 0, 7.0);
    
    Plane topplane;
    topplane.resize(1, 1.5, 6, 12);
    //    topplane.rotate(PI/4.0, 1, 0, 0);
    topplane.translate(2, 0, 7.0);

    // Vector containing the true point positions.
    rightplane.normal = rightplane.normal; 
  
    vector<Point, Eigen::aligned_allocator<Point> > points;
    vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> > normals;
    
    points.insert(points.end(), middleplane.points.begin(), middleplane.points.end());
    normals.insert(normals.end(), middleplane.points.size(), middleplane.normal);
    
    points.insert(points.end(), leftplane.points.begin(), leftplane.points.end());
    normals.insert(normals.end(), leftplane.points.size(), leftplane.normal);
    
    points.insert(points.end(), rightplane.points.begin(), rightplane.points.end());
    normals.insert(normals.end(), rightplane.points.size(), rightplane.normal);
    
    points.insert(points.end(), topplane.points.begin(), topplane.points.end());
    normals.insert(normals.end(), topplane.points.size(), topplane.normal);
    
    // Create nodes and add them to the system.
    unsigned int nnodes = 2; // Number of nodes.
    double path_length = 0.5; // Length of the path the nodes traverse.

    // Set the random seed.
    unsigned short seed = (unsigned short)time(NULL);
    seed48(&seed);
    
    unsigned int i = 0, j = 0;
    
    for (i = 0; i < nnodes; i++)
    { 
      // Translate in the x direction over the node path.
      Vector4d trans(i/(nnodes-1.0)*path_length, 0, 0, 1);
            
#if 1
      if (i >= 0)
	{
	  // perturb a little
	  double tnoise = 0.5;	// meters
	  trans.x() += tnoise*(drand48()-0.5);
	  trans.y() += tnoise*(drand48()-0.5);
	  trans.z() += tnoise*(drand48()-0.5);
	}
#endif

      // Don't rotate.
      Quaterniond rot(1, 0, 0, 0);
#if 1
      if (i >= 0)
	{
	  // perturb a little
	  double qnoise = 0.1;	// meters
	  rot.x() += qnoise*(drand48()-0.5);
	  rot.y() += qnoise*(drand48()-0.5);
	  rot.z() += qnoise*(drand48()-0.5);
	}
#endif
      rot.normalize();
      
      // Add a new node to the system.
      sys.addNode(trans, rot, cam_params, false);
    }
        
    double pointnoise = 1.0;
    
    // Add points into the system, and add noise.
    for (i = 0; i < points.size(); i++)
//.........这里部分代码省略.........
开发者ID:IDSCETHZurich,项目名称:gajanLocal,代码行数:101,代码来源:point_plane_vis.cpp

示例8: setupSBA

void setupSBA(SysSBA &sys)
{
    // Create camera parameters.
    frame_common::CamParams cam_params;
    cam_params.fx = 430; // Focal length in x
    cam_params.fy = 430; // Focal length in y
    cam_params.cx = 320; // X position of principal point
    cam_params.cy = 240; // Y position of principal point
    cam_params.tx = 0.3; // Baseline 

    // Define dimensions of the image.
    int maxx = 640;
    int maxy = 480;

    // Create a plane containing a wall of points.
    Plane middleplane;
    middleplane.resize(3, 2, 10, 5);
    //middleplane.rotate(PI/4.0, PI/6.0, 1, 0);
    middleplane.rotate(PI/4.0, 1, 0, 1);
    middleplane.translate(0.0, 0.0, 5.0);
    
    // Create another plane containing a wall of points.
    Plane mp2;
    mp2.resize(3, 2, 10, 5);
    mp2.rotate(0, 0, 0, 1);
    mp2.translate(0.0, 0.0, 4.0);


    // Create another plane containing a wall of points.
    Plane mp3;
    mp3.resize(3, 2, 10, 5);
    mp3.rotate(-PI/4.0, 1, 0, 1);
    mp3.translate(0.0, 0.0, 4.5);



    // Vector containing the true point positions.
    vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> > normals;
    
    points.insert(points.end(), middleplane.points.begin(), middleplane.points.end());
    normals.insert(normals.end(), middleplane.points.size(), middleplane.normal);
    points.insert(points.end(), mp2.points.begin(), mp2.points.end());
    normals.insert(normals.end(), mp2.points.size(), mp2.normal);
    points.insert(points.end(), mp3.points.begin(), mp3.points.end());
    normals.insert(normals.end(), mp3.points.size(), mp3.normal);
    
    // Create nodes and add them to the system.
    unsigned int nnodes = 2; // Number of nodes.
    double path_length = 1.0; // Length of the path the nodes traverse.

    // Set the random seed.
    unsigned short seed = (unsigned short)time(NULL);
    seed48(&seed);
    
    unsigned int i = 0;
    
    Vector3d inormal0 = middleplane.normal;
    Vector3d inormal1 = middleplane.normal;
    Vector3d inormal20 = mp2.normal;
    Vector3d inormal21 = mp2.normal;
    Vector3d inormal30 = mp3.normal;
    Vector3d inormal31 = mp3.normal;
    
    for (i = 0; i < nnodes; i++)
    { 
      // Translate in the x direction over the node path.
      Vector4d trans(i/(nnodes-1.0)*path_length, 0, 0, 1);
            
#if 1
      if (i >= 2)
	    {
	      // perturb a little
	      double tnoise = 0.5;	// meters
	      trans.x() += tnoise*(drand48()-0.5);
	      trans.y() += tnoise*(drand48()-0.5);
	      trans.z() += tnoise*(drand48()-0.5);
	    }
#endif

      // Don't rotate.
      Quaterniond rot(1, 0, 0, 0);
#if 1
      if (i >= 2)
	    {
	      // perturb a little
	      double qnoise = 0.1;	// meters
	      rot.x() += qnoise*(drand48()-0.5);
	      rot.y() += qnoise*(drand48()-0.5);
	      rot.z() += qnoise*(drand48()-0.5);
	    }
#endif
      rot.normalize();
      
      // Add a new node to the system.
      sys.addNode(trans, rot, cam_params, false);
      
      // set normal
      if (i == 0)
	{
	  inormal0 = rot.toRotationMatrix().transpose() * inormal0;
//.........这里部分代码省略.........
开发者ID:IDSCETHZurich,项目名称:gajanLocal,代码行数:101,代码来源:point_plane2_vis.cpp


注:本文中的Quaterniond::normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。