当前位置: 首页>>代码示例>>C++>>正文


C++ Objective::gradient方法代码示例

本文整理汇总了C++中Objective::gradient方法的典型用法代码示例。如果您正苦于以下问题:C++ Objective::gradient方法的具体用法?C++ Objective::gradient怎么用?C++ Objective::gradient使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Objective的用法示例。


在下文中一共展示了Objective::gradient方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: update

  void update( Vector<Real> &x, const Vector<Real> &s,
               Objective<Real> &obj, BoundConstraint<Real> &bnd,
               AlgorithmState<Real> &algo_state ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Update iterate
    algo_state.iter++;
    x.plus(s);
    (step_state->descentVec)->set(s);
    algo_state.snorm = s.norm();

    // Compute new gradient
    if ( useSecantPrecond_ ) {
      gp_->set(*(step_state->gradientVec));
    }
    obj.update(x,true,algo_state.iter);
    if ( computeObj_ ) {
      algo_state.value = obj.value(x,tol);
      algo_state.nfval++;
    }
    obj.gradient(*(step_state->gradientVec),x,tol);
    algo_state.ngrad++;

    // Update Secant Information
    if ( useSecantPrecond_ ) {
      secant_->updateStorage(x,*(step_state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
    }

    // Update algorithm state
    (algo_state.iterateVec)->set(x);
    algo_state.gnorm = step_state->gradientVec->norm();
  }
开发者ID:agrippa,项目名称:Trilinos,代码行数:33,代码来源:ROL_NewtonKrylovStep.hpp

示例2: computeCriticalityMeasure

  /** \brief Compute the gradient-based criticality measure.

             The criticality measure is 
             \f$\|x_k - P_{[a,b]}(x_k-\nabla f(x_k))\|_{\mathcal{X}}\f$.
             Here, \f$P_{[a,b]}\f$ denotes the projection onto the
             bound constraints.
 
             @param[in]    x     is the current iteration
             @param[in]    obj   is the objective function
             @param[in]    con   are the bound constraints
             @param[in]    tol   is a tolerance for inexact evaluations of the objective function
  */ 
  Real computeCriticalityMeasure(Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &con, Real tol) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    obj.gradient(*(step_state->gradientVec),x,tol);
    xtmp_->set(x);
    xtmp_->axpy(-1.0,(step_state->gradientVec)->dual());
    con.project(*xtmp_);
    xtmp_->axpy(-1.0,x);
    return xtmp_->norm();
  }
开发者ID:rainiscold,项目名称:trilinos,代码行数:21,代码来源:ROL_PrimalDualActiveSetStep.hpp

示例3: update

  /** \brief Update step, if successful.

      Given a trial step, \f$s_k\f$, this function updates \f$x_{k+1}=x_k+s_k\f$. 
      This function also updates the secant approximation.

      @param[in,out]   x          is the updated iterate
      @param[in]       s          is the computed trial step
      @param[in]       obj        is the objective function
      @param[in]       con        are the bound constraints
      @param[in]       algo_state contains the current state of the algorithm
  */
  void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, BoundConstraint<Real> &con,
               AlgorithmState<Real> &algo_state ) {
    Real tol = std::sqrt(ROL_EPSILON);
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    

    // Update iterate
    algo_state.iter++;
    x.axpy(1.0, s);
    // Compute new gradient
    if ( edesc_ == DESCENT_SECANT || 
        (edesc_ == DESCENT_NEWTONKRYLOV && useSecantPrecond_) ) {
      gp_->set(*(step_state->gradientVec));
    }
    obj.gradient(*(step_state->gradientVec),x,tol);
    algo_state.ngrad++;

    // Update Secant Information
    if ( edesc_ == DESCENT_SECANT || 
        (edesc_ == DESCENT_NEWTONKRYLOV && useSecantPrecond_) ) {
      secant_->update(*(step_state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
    }

    // Update algorithm state
    (algo_state.iterateVec)->set(x);
    if ( con.isActivated() ) {
      if ( useProjectedGrad_ ) {
        gp_->set(*(step_state->gradientVec));
        con.computeProjectedGradient( *gp_, x );
        algo_state.gnorm = gp_->norm();
      }
      else {
        d_->set(x);
        d_->axpy(-1.0,(step_state->gradientVec)->dual());
        con.project(*d_);
        d_->axpy(-1.0,x);
        algo_state.gnorm = d_->norm();
      }
    }
    else {
      algo_state.gnorm = (step_state->gradientVec)->norm();
    }
  }
开发者ID:ChiahungTai,项目名称:Trilinos,代码行数:55,代码来源:ROL_LineSearchStep.hpp

示例4: update

  void update( Vector<Real> &x, const Vector<Real> &s,
               Objective<Real> &obj, BoundConstraint<Real> &bnd,
               AlgorithmState<Real> &algo_state ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1);
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Update iterate and store previous step
    algo_state.iter++;
    d_->set(x);
    x.plus(s);
    bnd.project(x);
    (step_state->descentVec)->set(x);
    (step_state->descentVec)->axpy(-one,*d_);
    algo_state.snorm = s.norm();

    // Compute new gradient
    gp_->set(*(step_state->gradientVec));
    obj.update(x,true,algo_state.iter);
    if ( computeObj_ ) {
      algo_state.value = obj.value(x,tol);
      algo_state.nfval++;
    }
    obj.gradient(*(step_state->gradientVec),x,tol);
    algo_state.ngrad++;

    // Update Secant Information
    secant_->updateStorage(x,*(step_state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);

    // Update algorithm state
    (algo_state.iterateVec)->set(x);
    if ( useProjectedGrad_ ) {
      gp_->set(*(step_state->gradientVec));
      bnd.computeProjectedGradient( *gp_, x );
      algo_state.gnorm = gp_->norm();
    }
    else {
      d_->set(x);
      d_->axpy(-one,(step_state->gradientVec)->dual());
      bnd.project(*d_);
      d_->axpy(-one,x);
      algo_state.gnorm = d_->norm();
    }
  }
开发者ID:agrippa,项目名称:Trilinos,代码行数:43,代码来源:ROL_ProjectedSecantStep.hpp

示例5: update

    void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, BoundConstraint<Real> &con,
                 AlgorithmState<Real> &algo_state ) {
        Real tol = std::sqrt(ROL_EPSILON<Real>());
        Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

        // Update iterate and store step
        algo_state.iter++;
        x.plus(s);
        (step_state->descentVec)->set(s);
        algo_state.snorm = s.norm();

        // Compute new gradient
        obj.update(x,true,algo_state.iter);
        if ( computeObj_ ) {
            algo_state.value = obj.value(x,tol);
            algo_state.nfval++;
        }
        obj.gradient(*(step_state->gradientVec),x,tol);
        algo_state.ngrad++;

        // Update algorithm state
        (algo_state.iterateVec)->set(x);
        algo_state.gnorm = (step_state->gradientVec)->norm();
    }
开发者ID:uppatispr,项目名称:trilinos-official,代码行数:24,代码来源:ROL_GradientStep.hpp

示例6: status

  virtual bool status( const ELineSearch type, int &ls_neval, int &ls_ngrad, const Real alpha, 
                       const Real fold, const Real sgold, const Real fnew, 
                       const Vector<Real> &x, const Vector<Real> &s, 
                       Objective<Real> &obj, BoundConstraint<Real> &con ) { 
    Real tol = std::sqrt(ROL_EPSILON);

    // Check Armijo Condition
    bool armijo = false;
    if ( con.isActivated() ) {
      Real gs = 0.0;
      if ( edesc_ == DESCENT_STEEPEST ) {
        updateIterate(*d_,x,s,alpha,con);
        d_->scale(-1.0);
        d_->plus(x);
        gs = -s.dot(*d_);
      }
      else {
        d_->set(s);
        d_->scale(-1.0);
        con.pruneActive(*d_,*(grad_),x,eps_);
        gs = alpha*(grad_)->dot(*d_);
        d_->zero();
        updateIterate(*d_,x,s,alpha,con);
        d_->scale(-1.0);
        d_->plus(x);
        con.pruneInactive(*d_,*(grad_),x,eps_);
        gs += d_->dot(grad_->dual());
      }
      if ( fnew <= fold - c1_*gs ) {
        armijo = true;
      }
    }
    else {
      if ( fnew <= fold + c1_*alpha*sgold ) {
        armijo = true;
      }
    }

    // Check Maximum Iteration
    bool itcond = false;
    if ( ls_neval >= maxit_ ) { 
      itcond = true;
    }

    // Check Curvature Condition
    bool curvcond = false;
    if ( armijo && ((type != LINESEARCH_BACKTRACKING && type != LINESEARCH_CUBICINTERP) ||
                    (edesc_ == DESCENT_NONLINEARCG)) ) {
      if (econd_ == CURVATURECONDITION_GOLDSTEIN) {
        if (fnew >= fold + (1.0-c1_)*alpha*sgold) {
          curvcond = true;
        }
      }
      else if (econd_ == CURVATURECONDITION_NULL) {
        curvcond = true;
      }
      else { 
        updateIterate(*xtst_,x,s,alpha,con);
        obj.update(*xtst_);
        obj.gradient(*g_,*xtst_,tol);
        Real sgnew = 0.0;
        if ( con.isActivated() ) {
          d_->set(s);
          d_->scale(-alpha);
          con.pruneActive(*d_,s,x);
          sgnew = -d_->dot(g_->dual());
        }
        else {
          sgnew = s.dot(g_->dual());
        }
        ls_ngrad++;
   
        if (    ((econd_ == CURVATURECONDITION_WOLFE)       
                     && (sgnew >= c2_*sgold))
             || ((econd_ == CURVATURECONDITION_STRONGWOLFE) 
                     && (std::abs(sgnew) <= c2_*std::abs(sgold)))
             || ((econd_ == CURVATURECONDITION_GENERALIZEDWOLFE) 
                     && (c2_*sgold <= sgnew && sgnew <= -c3_*sgold))
             || ((econd_ == CURVATURECONDITION_APPROXIMATEWOLFE) 
                     && (c2_*sgold <= sgnew && sgnew <= (2.0*c1_ - 1.0)*sgold)) ) {
          curvcond = true;
        }
      }
    }

    if (type == LINESEARCH_BACKTRACKING || type == LINESEARCH_CUBICINTERP) {
      if (edesc_ == DESCENT_NONLINEARCG) {
        return ((armijo && curvcond) || itcond);
      }
      else {
        return (armijo || itcond);
      }
    }
    else {
      return ((armijo && curvcond) || itcond);
    }
  }
开发者ID:abhishek4747,项目名称:trilinos,代码行数:97,代码来源:ROL_LineSearch.hpp


注:本文中的Objective::gradient方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。