当前位置: 首页>>代码示例>>C++>>正文


C++ MultidimArray::sum方法代码示例

本文整理汇总了C++中MultidimArray::sum方法的典型用法代码示例。如果您正苦于以下问题:C++ MultidimArray::sum方法的具体用法?C++ MultidimArray::sum怎么用?C++ MultidimArray::sum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MultidimArray的用法示例。


在下文中一共展示了MultidimArray::sum方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: getKullbackLeibnerDivergence

/** Kullback-Leibner divergence */
double getKullbackLeibnerDivergence(MultidimArray<Complex >& Fimg,
                                    MultidimArray<Complex >& Fref, MultidimArray<double>& sigma2,
                                    MultidimArray<double>& p_i, MultidimArray<double>& q_i, int highshell, int lowshell)
{
	// First check dimensions are OK
	if (!Fimg.sameShape(Fref))
	{
		REPORT_ERROR("getKullbackLeibnerDivergence ERROR: Fimg and Fref are not of the same shape.");
	}

	if (highshell < 0)
	{
		highshell = XSIZE(Fimg) - 1;
	}
	if (lowshell < 0)
	{
		lowshell = 0;
	}

	if (highshell > XSIZE(sigma2))
	{
		REPORT_ERROR("getKullbackLeibnerDivergence ERROR: highshell is larger than size of sigma2 array.");
	}

	if (highshell < lowshell)
	{
		REPORT_ERROR("getKullbackLeibnerDivergence ERROR: highshell is smaller than lowshell.");
	}

	// Initialize the histogram
	MultidimArray<int> histogram;
	int histogram_size = 101;
	int histogram_origin = histogram_size / 2;
	double sigma_max = 10.;
	double histogram_factor = histogram_origin / sigma_max;
	histogram.initZeros(histogram_size);

	// This way this will work in both 2D and 3D
	FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(Fimg)
	{
		int ires = ROUND(sqrt(kp * kp + ip * ip + jp * jp));
		if (ires >= lowshell && ires <= highshell)
		{
			// Use FT of masked image for noise estimation!
			double diff_real = (DIRECT_A3D_ELEM(Fref, k, i, j)).real - (DIRECT_A3D_ELEM(Fimg, k, i, j)).real;
			double diff_imag = (DIRECT_A3D_ELEM(Fref, k, i, j)).imag - (DIRECT_A3D_ELEM(Fimg, k, i, j)).imag;
			double sigma = sqrt(DIRECT_A1D_ELEM(sigma2, ires));

			// Divide by standard deviation to normalise all the difference
			diff_real /= sigma;
			diff_imag /= sigma;

			// Histogram runs from -10 sigma to +10 sigma
			diff_real += sigma_max;
			diff_imag += sigma_max;

			// Make histogram on-the-fly;
			// Real part
			int ihis = ROUND(diff_real * histogram_factor);
			if (ihis < 0)
			{
				ihis = 0;
			}
			else if (ihis >= histogram_size)
			{
				ihis = histogram_size - 1;
			}
			histogram(ihis)++;
			// Imaginary part
			ihis = ROUND(diff_imag * histogram_factor);
			if (ihis < 0)
			{
				ihis = 0;
			}
			else if (ihis > histogram_size)
			{
				ihis = histogram_size;
			}
			histogram(ihis)++;

		}
	}

	// Normalise the histogram and the discretised analytical Gaussian
	double norm = (double)histogram.sum();
	double gaussnorm = 0.;
	for (int i = 0; i < histogram_size; i++)
	{
		double x = (double)i / histogram_factor;
		gaussnorm += gaussian1D(x - sigma_max, 1. , 0.);
	}

	// Now calculate the actual Kullback-Leibner divergence
	double kl_divergence = 0.;
	p_i.resize(histogram_size);
	q_i.resize(histogram_size);
	for (int i = 0; i < histogram_size; i++)
	{
		// Data distribution
//.........这里部分代码省略.........
开发者ID:shy3u,项目名称:GeRelion,代码行数:101,代码来源:fftw.cpp

示例2: fit

void PolyZernikes::fit(const Matrix1D<int> & coef, MultidimArray<double> & im, MultidimArray<double> &weight,
                       MultidimArray<bool> & ROI, int verbose)
{
    this->create(coef);

    size_t xdim = XSIZE(im);
    size_t ydim = YSIZE(im);
    //int numZer = (size_t)coef.sum();
    int numZer = (size_t)coef.sum();

    //Actually polOrder corresponds to the polynomial order +1
    int polOrder=(int)ZERNIKE_ORDER(coef.size());

    im.setXmippOrigin();

    Matrix2D<double> polValue(polOrder,polOrder);

    //First argument means number of images
    //Second argument means number of pixels
    WeightedLeastSquaresHelper weightedLeastSquaresHelper;
    Matrix2D<double>& zerMat=weightedLeastSquaresHelper.A;

    zerMat.resizeNoCopy((size_t)ROI.sum(), numZer);
    double iMaxDim2 = 2./std::max(xdim,ydim);

    size_t pixel_idx=0;

    weightedLeastSquaresHelper.b.resizeNoCopy((size_t)ROI.sum());
    weightedLeastSquaresHelper.w.resizeNoCopy(weightedLeastSquaresHelper.b);

    FOR_ALL_ELEMENTS_IN_ARRAY2D(im)
    {
        if ( (A2D_ELEM(ROI,i,j)))
        {
            //For one i we swap the different j
            double y=i*iMaxDim2;
            double x=j*iMaxDim2;

            //polValue = [ 0    y   y2    y3   ...
            //             x   xy  xy2    xy3  ...
            //             x2  x2y x2y2   x2y3 ]
            //dMij(polValue,py,px) py es fila, px es columna

            for (int py = 0; py < polOrder; ++py)
            {
                double ypy=std::pow(y,py);
                for (int px = 0; px < polOrder; ++px)
                    dMij(polValue,px,py) = ypy*std::pow(x,px);
            }

            Matrix2D<int> *fMat;

            //We generate the representation of the Zernike polynomials
            for (int k=0; k < numZer; ++k)
            {
                fMat = &fMatV[k];

                if (fMat == NULL)
                    continue;

                double temp = 0;
                for (size_t px = 0; px < (*fMat).Xdim(); ++px)
                    for (size_t py = 0; py < (*fMat).Ydim(); ++py)
                        temp += dMij(*fMat,py,px)*dMij(polValue,py,px);

                dMij(zerMat,pixel_idx,k) = temp;
            }

            VEC_ELEM(weightedLeastSquaresHelper.b,pixel_idx)=A2D_ELEM(im,i,j);
            VEC_ELEM(weightedLeastSquaresHelper.w,pixel_idx)=std::abs(A2D_ELEM(weight,i,j));
            ++pixel_idx;
        }
    }

    Matrix1D<double> zernikeCoefficients;
    weightedLeastSquares(weightedLeastSquaresHelper, zernikeCoefficients);
    fittedCoeffs = zernikeCoefficients;

    // Pointer to the image to be fitted
    MultidimArray<double> reconstructed;

    reconstructed.resizeNoCopy(im);
    pixel_idx=0;

    FOR_ALL_ELEMENTS_IN_ARRAY2D(im)
    if (A2D_ELEM(ROI,i,j))
    {
        double temp=0;
        for (int k=0; k < numZer; ++k)
            temp+=dMij(zerMat,pixel_idx,k)*VEC_ELEM(fittedCoeffs,k);

        A2D_ELEM(reconstructed,i,j)=temp;

        if ( fabs(A2D_ELEM(reconstructed,i,j)-A2D_ELEM(im,i,j)) > PI)
            A2D_ELEM(ROI,i,j) = false;

        ++pixel_idx;
    }

    pixel_idx=0;
//.........这里部分代码省略.........
开发者ID:coocoky,项目名称:scipion,代码行数:101,代码来源:xmipp_polynomials.cpp


注:本文中的MultidimArray::sum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。