当前位置: 首页>>代码示例>>C++>>正文


C++ MultidimArray::getDim方法代码示例

本文整理汇总了C++中MultidimArray::getDim方法的典型用法代码示例。如果您正苦于以下问题:C++ MultidimArray::getDim方法的具体用法?C++ MultidimArray::getDim怎么用?C++ MultidimArray::getDim使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MultidimArray的用法示例。


在下文中一共展示了MultidimArray::getDim方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: symmetriseMap

void symmetriseMap(MultidimArray<DOUBLE> &img, FileName &fn_sym, bool do_wrap)
{

	if (img.getDim() != 3)
		REPORT_ERROR("symmetriseMap ERROR: symmetriseMap can only be run on 3D maps!");

	img.setXmippOrigin();

	SymList SL;
	SL.read_sym_file(fn_sym);

	Matrix2D<DOUBLE> L(4, 4), R(4, 4); // A matrix from the list
    MultidimArray<DOUBLE> sum, aux;
    sum = img;
    aux.resize(img);

	for (int isym = 0; isym < SL.SymsNo(); isym++)
    {
        SL.get_matrices(isym, L, R);
        applyGeometry(img, aux, R, IS_INV, do_wrap);
        sum += aux;
    }

	// Overwrite the input
	img = sum / (SL.SymsNo() + 1);

}
开发者ID:dtegunov,项目名称:vlion,代码行数:27,代码来源:symmetries.cpp

示例2: resizeMap

void resizeMap(MultidimArray<double >& img, int newsize)
{

	FourierTransformer transformer;
	MultidimArray<Complex > FT, FT2;
	transformer.FourierTransform(img, FT, false);
	windowFourierTransform(FT, FT2, newsize);
	if (img.getDim() == 2)
	{
		img.resize(newsize, newsize);
	}
	else if (img.getDim() == 3)
	{
		img.resize(newsize, newsize, newsize);
	}
	transformer.inverseFourierTransform(FT2, img);

}
开发者ID:shy3u,项目名称:GeRelion,代码行数:18,代码来源:fftw.cpp

示例3: shiftImageInFourierTransform

// Shift an image through phase-shifts in its Fourier Transform (without pretabulated sine and cosine)
void shiftImageInFourierTransform(MultidimArray<Complex >& in,
                                  MultidimArray<Complex >& out,
                                  double oridim, Matrix1D<double> shift)
{
	out.resize(in);
	shift /= -oridim;
	double dotp, a, b, c, d, ac, bd, ab_cd, x, y, z, xshift, yshift, zshift;
	switch (in.getDim())
	{
	case 1:
		xshift = XX(shift);
		if (ABS(xshift) < XMIPP_EQUAL_ACCURACY)
		{
			out = in;
			return;
		}
		for (long int j = 0; j < XSIZE(in); j++)
		{
			x = j;
			dotp = 2 * PI * (x * xshift);
			a = cos(dotp);
			b = sin(dotp);
			c = DIRECT_A1D_ELEM(in, j).real;
			d = DIRECT_A1D_ELEM(in, j).imag;
			ac = a * c;
			bd = b * d;
			ab_cd = (a + b) * (c + d); // (ab_cd-ac-bd = ad+bc : but needs 4 multiplications)
			DIRECT_A1D_ELEM(out, j) = Complex(ac - bd, ab_cd - ac - bd);
		}
		break;
	case 2:
		xshift = XX(shift);
		yshift = YY(shift);
		if (ABS(xshift) < XMIPP_EQUAL_ACCURACY && ABS(yshift) < XMIPP_EQUAL_ACCURACY)
		{
			out = in;
			return;
		}
		for (long int i = 0; i < XSIZE(in); i++)
			for (long int j = 0; j < XSIZE(in); j++)
			{
				x = j;
				y = i;
				dotp = 2 * PI * (x * xshift + y * yshift);
				a = cos(dotp);
				b = sin(dotp);
				c = DIRECT_A2D_ELEM(in, i, j).real;
				d = DIRECT_A2D_ELEM(in, i, j).imag;
				ac = a * c;
				bd = b * d;
				ab_cd = (a + b) * (c + d);
				DIRECT_A2D_ELEM(out, i, j) =  Complex(ac - bd, ab_cd - ac - bd);
			}
		for (long int i = YSIZE(in) - 1; i >= XSIZE(in); i--)
		{
			y = i - YSIZE(in);
			for (long int j = 0; j < XSIZE(in); j++)
			{
				x = j;
				dotp = 2 * PI * (x * xshift + y * yshift);
				a = cos(dotp);
				b = sin(dotp);
				c = DIRECT_A2D_ELEM(in, i, j).real;
				d = DIRECT_A2D_ELEM(in, i, j).imag;
				ac = a * c;
				bd = b * d;
				ab_cd = (a + b) * (c + d);
				DIRECT_A2D_ELEM(out, i, j) = Complex(ac - bd, ab_cd - ac - bd);
			}
		}
		break;
	case 3:
		xshift = XX(shift);
		yshift = YY(shift);
		zshift = ZZ(shift);
		if (ABS(xshift) < XMIPP_EQUAL_ACCURACY && ABS(yshift) < XMIPP_EQUAL_ACCURACY && ABS(zshift) < XMIPP_EQUAL_ACCURACY)
		{
			out = in;
			return;
		}
		for (long int k = 0; k < ZSIZE(in); k++)
		{
			z = (k < XSIZE(in)) ? k : k - ZSIZE(in);
			for (long int i = 0; i < YSIZE(in); i++)
			{
				y = (i < XSIZE(in)) ? i : i - YSIZE(in);
				for (long int j = 0; j < XSIZE(in); j++)
				{
					x = j;
					dotp = 2 * PI * (x * xshift + y * yshift + z * zshift);
					a = cos(dotp);
					b = sin(dotp);
					c = DIRECT_A3D_ELEM(in, k, i, j).real;
					d = DIRECT_A3D_ELEM(in, k, i, j).imag;
					ac = a * c;
					bd = b * d;
					ab_cd = (a + b) * (c + d);
					DIRECT_A3D_ELEM(out, k, i, j) = Complex(ac - bd, ab_cd - ac - bd);
				}
//.........这里部分代码省略.........
开发者ID:shy3u,项目名称:GeRelion,代码行数:101,代码来源:fftw.cpp

示例4: computeFourierTransformMap

// Fill data array with oversampled Fourier transform, and calculate its power spectrum
void Projector::computeFourierTransformMap(MultidimArray<DOUBLE> &vol_in, MultidimArray<DOUBLE> &power_spectrum, int current_size, int nr_threads, bool do_gridding)
{

	MultidimArray<DOUBLE> Mpad;
	MultidimArray<Complex > Faux;
    FourierTransformer transformer;
    // DEBUGGING: multi-threaded FFTWs are giving me a headache?
	// For a long while: switch them off!
	//transformer.setThreadsNumber(nr_threads);
    DOUBLE normfft;

	// Size of padded real-space volume
	int padoridim = padding_factor * ori_size;

	// Initialize data array of the oversampled transform
	ref_dim = vol_in.getDim();

	// Make Mpad
	switch (ref_dim)
	{
	case 2:
	   Mpad.initZeros(padoridim, padoridim);
	   normfft = (DOUBLE)(padding_factor * padding_factor);
	   break;
	case 3:
	   Mpad.initZeros(padoridim, padoridim, padoridim);
	   if (data_dim ==3)
		   normfft = (DOUBLE)(padding_factor * padding_factor * padding_factor);
	   else
		   normfft = (DOUBLE)(padding_factor * padding_factor * padding_factor * ori_size);
	   break;
	default:
	   REPORT_ERROR("Projector::computeFourierTransformMap%%ERROR: Dimension of the data array should be 2 or 3");
	}

	// First do a gridding pre-correction on the real-space map:
	// Divide by the inverse Fourier transform of the interpolator in Fourier-space
	// 10feb11: at least in 2D case, this seems to be the wrong thing to do!!!
	// TODO: check what is best for subtomo!
	if (do_gridding)// && data_dim != 3)
		griddingCorrect(vol_in);

	// Pad translated map with zeros
	vol_in.setXmippOrigin();
	Mpad.setXmippOrigin();
	FOR_ALL_ELEMENTS_IN_ARRAY3D(vol_in) // This will also work for 2D
		A3D_ELEM(Mpad, k, i, j) = A3D_ELEM(vol_in, k, i, j);

	// Translate padded map to put origin of FT in the center
	CenterFFT(Mpad, true);

	// Calculate the oversampled Fourier transform
	transformer.FourierTransform(Mpad, Faux, false);

	// Free memory: Mpad no longer needed
	Mpad.clear();

	// Resize data array to the right size and initialise to zero
	initZeros(current_size);

	// Fill data only for those points with distance to origin less than max_r
	// (other points will be zero because of initZeros() call above
	// Also calculate radial power spectrum
	power_spectrum.initZeros(ori_size / 2 + 1);
	MultidimArray<DOUBLE> counter(power_spectrum);
	counter.initZeros();

	int max_r2 = r_max * r_max * padding_factor * padding_factor;
	FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(Faux) // This will also work for 2D
	{
		int r2 = kp*kp + ip*ip + jp*jp;
		// The Fourier Transforms are all "normalised" for 2D transforms of size = ori_size x ori_size
		if (r2 <= max_r2)
		{
			// Set data array
			A3D_ELEM(data, kp, ip, jp) = DIRECT_A3D_ELEM(Faux, k, i, j) * normfft;

			// Calculate power spectrum
			int ires = ROUND( sqrt((DOUBLE)r2) / padding_factor );
			// Factor two because of two-dimensionality of the complex plane
			DIRECT_A1D_ELEM(power_spectrum, ires) += norm(A3D_ELEM(data, kp, ip, jp)) / 2.;
			DIRECT_A1D_ELEM(counter, ires) += 1.;
		}
	}

	// Calculate radial average of power spectrum
	FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY1D(power_spectrum)
	{
		if (DIRECT_A1D_ELEM(counter, i) < 1.)
			DIRECT_A1D_ELEM(power_spectrum, i) = 0.;
		else
			DIRECT_A1D_ELEM(power_spectrum, i) /= DIRECT_A1D_ELEM(counter, i);
	}

	transformer.cleanup();

}
开发者ID:dtegunov,项目名称:vlion,代码行数:98,代码来源:projector.cpp


注:本文中的MultidimArray::getDim方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。