本文整理汇总了C++中MultidimArray::sameShape方法的典型用法代码示例。如果您正苦于以下问题:C++ MultidimArray::sameShape方法的具体用法?C++ MultidimArray::sameShape怎么用?C++ MultidimArray::sameShape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MultidimArray
的用法示例。
在下文中一共展示了MultidimArray::sameShape方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getFSC
// Fourier ring correlation -----------------------------------------------
// from precalculated Fourier Transforms, and without sampling rate etc.
void getFSC(MultidimArray< Complex >& FT1,
MultidimArray< Complex >& FT2,
MultidimArray< double >& fsc)
{
if (!FT1.sameShape(FT2))
{
REPORT_ERROR("fourierShellCorrelation ERROR: MultidimArrays have different shapes!");
}
MultidimArray< int > radial_count(XSIZE(FT1));
MultidimArray<double> num, den1, den2;
Matrix1D<double> f(3);
num.initZeros(radial_count);
den1.initZeros(radial_count);
den2.initZeros(radial_count);
fsc.initZeros(radial_count);
FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(FT1)
{
int idx = ROUND(sqrt(kp * kp + ip * ip + jp * jp));
if (idx >= XSIZE(FT1))
{
continue;
}
Complex z1 = DIRECT_A3D_ELEM(FT1, k, i, j);
Complex z2 = DIRECT_A3D_ELEM(FT2, k, i, j);
double absz1 = abs(z1);
double absz2 = abs(z2);
num(idx) += (conj(z1) * z2).real;
den1(idx) += absz1 * absz1;
den2(idx) += absz2 * absz2;
radial_count(idx)++;
}
FOR_ALL_ELEMENTS_IN_ARRAY1D(fsc)
{
fsc(i) = num(i) / sqrt(den1(i) * den2(i));
}
}
示例2: getKullbackLeibnerDivergence
/** Kullback-Leibner divergence */
double getKullbackLeibnerDivergence(MultidimArray<Complex >& Fimg,
MultidimArray<Complex >& Fref, MultidimArray<double>& sigma2,
MultidimArray<double>& p_i, MultidimArray<double>& q_i, int highshell, int lowshell)
{
// First check dimensions are OK
if (!Fimg.sameShape(Fref))
{
REPORT_ERROR("getKullbackLeibnerDivergence ERROR: Fimg and Fref are not of the same shape.");
}
if (highshell < 0)
{
highshell = XSIZE(Fimg) - 1;
}
if (lowshell < 0)
{
lowshell = 0;
}
if (highshell > XSIZE(sigma2))
{
REPORT_ERROR("getKullbackLeibnerDivergence ERROR: highshell is larger than size of sigma2 array.");
}
if (highshell < lowshell)
{
REPORT_ERROR("getKullbackLeibnerDivergence ERROR: highshell is smaller than lowshell.");
}
// Initialize the histogram
MultidimArray<int> histogram;
int histogram_size = 101;
int histogram_origin = histogram_size / 2;
double sigma_max = 10.;
double histogram_factor = histogram_origin / sigma_max;
histogram.initZeros(histogram_size);
// This way this will work in both 2D and 3D
FOR_ALL_ELEMENTS_IN_FFTW_TRANSFORM(Fimg)
{
int ires = ROUND(sqrt(kp * kp + ip * ip + jp * jp));
if (ires >= lowshell && ires <= highshell)
{
// Use FT of masked image for noise estimation!
double diff_real = (DIRECT_A3D_ELEM(Fref, k, i, j)).real - (DIRECT_A3D_ELEM(Fimg, k, i, j)).real;
double diff_imag = (DIRECT_A3D_ELEM(Fref, k, i, j)).imag - (DIRECT_A3D_ELEM(Fimg, k, i, j)).imag;
double sigma = sqrt(DIRECT_A1D_ELEM(sigma2, ires));
// Divide by standard deviation to normalise all the difference
diff_real /= sigma;
diff_imag /= sigma;
// Histogram runs from -10 sigma to +10 sigma
diff_real += sigma_max;
diff_imag += sigma_max;
// Make histogram on-the-fly;
// Real part
int ihis = ROUND(diff_real * histogram_factor);
if (ihis < 0)
{
ihis = 0;
}
else if (ihis >= histogram_size)
{
ihis = histogram_size - 1;
}
histogram(ihis)++;
// Imaginary part
ihis = ROUND(diff_imag * histogram_factor);
if (ihis < 0)
{
ihis = 0;
}
else if (ihis > histogram_size)
{
ihis = histogram_size;
}
histogram(ihis)++;
}
}
// Normalise the histogram and the discretised analytical Gaussian
double norm = (double)histogram.sum();
double gaussnorm = 0.;
for (int i = 0; i < histogram_size; i++)
{
double x = (double)i / histogram_factor;
gaussnorm += gaussian1D(x - sigma_max, 1. , 0.);
}
// Now calculate the actual Kullback-Leibner divergence
double kl_divergence = 0.;
p_i.resize(histogram_size);
q_i.resize(histogram_size);
for (int i = 0; i < histogram_size; i++)
{
// Data distribution
//.........这里部分代码省略.........