本文整理汇总了C++中MeshEditor::open方法的典型用法代码示例。如果您正苦于以下问题:C++ MeshEditor::open方法的具体用法?C++ MeshEditor::open怎么用?C++ MeshEditor::open使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MeshEditor
的用法示例。
在下文中一共展示了MeshEditor::open方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: build_mesh
Mesh build_mesh(const std::vector<unsigned int>& cells, const std::vector<double>& vertices, int dim)
{
// vertices and cells are flattened
unsigned int vlen = vertices.size() / dim;
unsigned int clen = cells.size() / (dim + 1);
Mesh mesh;
MeshEditor editor;
editor.open(mesh, dim, dim);
editor.init_vertices(vlen);
editor.init_cells(clen);
if (dim==3)
{
for (int i=0; i<vlen; i++)
editor.add_vertex(i, vertices[3*i], vertices[3*i+1], vertices[3*i+2]);
for (int i=0; i<clen; i++)
editor.add_cell(i, cells[4*i], cells[4*i+1], cells[4*i+2], cells[4*i+3]);
}
else
{
for (int i=0; i<vlen; i++)
editor.add_vertex(i, vertices[2*i], vertices[2*i+1]);
for (int i=0; i<clen; i++)
editor.add_cell(i, cells[3*i], cells[3*i+1], cells[3*i+2]);
}
editor.close();
return mesh;
}
示例2: p_refine
//-----------------------------------------------------------------------------
void dolfin::p_refine(Mesh& refined_mesh, const Mesh& mesh)
{
MeshEditor editor;
if (mesh.geometry().degree() != 1)
{
dolfin_error("refine.cpp",
"increase polynomial degree of mesh",
"Currently only linear -> quadratic is supported");
}
const CellType::Type cell_type = mesh.type().cell_type();
if (cell_type != CellType::Type::triangle
and cell_type != CellType::Type::tetrahedron
and cell_type != CellType::Type::interval)
{
dolfin_error("refine.cpp",
"increase polynomial degree of mesh",
"Unsupported cell type");
}
const std::size_t tdim = mesh.topology().dim();
const std::size_t gdim = mesh.geometry().dim();
editor.open(refined_mesh, cell_type, tdim, gdim, 2);
// Copy over mesh
editor.init_vertices_global(mesh.num_entities(0), mesh.num_entities_global(0));
for (VertexIterator v(mesh); !v.end(); ++v)
editor.add_vertex(v->index(), v->point());
editor.init_cells_global(mesh.num_entities(tdim), mesh.num_entities_global(tdim));
std::vector<std::size_t> verts(tdim + 1);
for (CellIterator c(mesh); !c.end(); ++c)
{
std::copy(c->entities(0), c->entities(0) + tdim + 1, verts.begin());
editor.add_cell(c->index(), verts);
}
// Initialise edges
editor.init_entities();
// Add points at centres of edges
for (EdgeIterator e(refined_mesh); !e.end(); ++e)
editor.add_entity_point(1, 0, e->index(), e->midpoint());
editor.close();
}
示例3: close
//-----------------------------------------------------------------------------
void DynamicMeshEditor::close(bool order)
{
dolfin_assert(_mesh);
dolfin_assert(_cell_type);
// Open default mesh editor
MeshEditor editor;
editor.open(*_mesh, _cell_type->cell_type(), _tdim, _gdim);
// Set number of vertices
const std::size_t num_vertices = vertex_coordinates.size()/_gdim;
editor.init_vertices(num_vertices);
// Set number of cells
const std::size_t vertices_per_cell = _cell_type->num_vertices(_gdim);
const std::size_t num_cells = cell_vertices.size()/vertices_per_cell;
editor.init_cells(num_cells);
// Add vertices
std::vector<double> p(_gdim);
for (std::size_t v = 0; v < num_vertices; v++)
{
const std::size_t offset = v*_gdim;
for (std::size_t i = 0; i < _gdim; i++)
p[i] = vertex_coordinates[offset + i];
editor.add_vertex(v, p);
}
// Add cells
std::vector<std::size_t> vertices(vertices_per_cell);
for (std::size_t c = 0; c < num_cells; c++)
{
const std::size_t offset = c*vertices_per_cell;
for (std::size_t i = 0; i < vertices_per_cell; i++)
vertices[i] = cell_vertices[offset + i];
editor.add_cell(c, vertices);
}
// Close editor
editor.close(order);
// Clear data
clear();
}
示例4: Mesh
//-----------------------------------------------------------------------------
UnitTriangleMesh::UnitTriangleMesh() : Mesh()
{
// Receive mesh according to parallel policy
if (MPI::is_receiver(this->mpi_comm()))
{
MeshPartitioning::build_distributed_mesh(*this);
return;
}
// Open mesh for editing
MeshEditor editor;
editor.open(*this, CellType::triangle, 2, 2);
// Create vertices
editor.init_vertices_global(3, 3);
std::vector<double> x(2);
x[0] = 0.0; x[1] = 0.0;
editor.add_vertex(0, x);
x[0] = 1.0; x[1] = 0.0;
editor.add_vertex(1, x);
x[0] = 0.0; x[1] = 1.0;
editor.add_vertex(2, x);
// Create cells
editor.init_cells_global(1, 1);
std::vector<std::size_t> cell_data(3);
cell_data[0] = 0; cell_data[1] = 1; cell_data[2] = 2;
editor.add_cell(0, cell_data);
// Close mesh editor
editor.close();
// Broadcast mesh according to parallel policy
if (MPI::is_broadcaster(this->mpi_comm()))
{
MeshPartitioning::build_distributed_mesh(*this);
return;
}
}
示例5: build_local
//-----------------------------------------------------------------------------
void ParallelRefinement::build_local(Mesh& new_mesh) const
{
MeshEditor ed;
const std::size_t tdim = _mesh.topology().dim();
const std::size_t gdim = _mesh.geometry().dim();
dolfin_assert(new_vertex_coordinates.size()%gdim == 0);
const std::size_t num_vertices = new_vertex_coordinates.size()/gdim;
const std::size_t num_cell_vertices = tdim + 1;
dolfin_assert(new_cell_topology.size()%num_cell_vertices == 0);
const std::size_t num_cells = new_cell_topology.size()/num_cell_vertices;
ed.open(new_mesh, tdim, gdim);
ed.init_vertices(num_vertices);
std::size_t i = 0;
for (auto p = new_vertex_coordinates.begin();
p != new_vertex_coordinates.end(); p += gdim)
{
std::vector<double> vertex(p, p + gdim);
ed.add_vertex(i, vertex);
++i;
}
ed.init_cells(num_cells);
i = 0;
std::vector<std::size_t> cell(num_cell_vertices);
for (auto p = new_cell_topology.begin(); p != new_cell_topology.end();
p += num_cell_vertices)
{
std::copy(p, p + num_cell_vertices, cell.begin());
ed.add_cell(i, cell);
++i;
}
ed.close();
}
示例6: build
//-----------------------------------------------------------------------------
void IntervalMesh::build(std::size_t nx, double a, double b)
{
// Receive mesh according to parallel policy
if (MPI::is_receiver(this->mpi_comm()))
{
MeshPartitioning::build_distributed_mesh(*this);
return;
}
if (std::abs(a - b) < DOLFIN_EPS)
{
dolfin_error("Interval.cpp",
"create interval",
"Length of interval is zero. Consider checking your dimensions");
}
if (b < a)
{
dolfin_error("Interval.cpp",
"create interval",
"Length of interval is negative. Consider checking the order of your arguments");
}
if (nx < 1)
{
dolfin_error("Interval.cpp",
"create interval",
"Number of points on interval is (%d), it must be at least 1", nx);
}
rename("mesh", "Mesh of the interval (a, b)");
// Open mesh for editing
MeshEditor editor;
editor.open(*this, CellType::interval, 1, 1);
// Create vertices and cells:
editor.init_vertices_global((nx+1), (nx+1));
editor.init_cells_global(nx, nx);
// Create main vertices:
for (std::size_t ix = 0; ix <= nx; ix++)
{
const std::vector<double>
x(1, a + (static_cast<double>(ix)*(b - a)/static_cast<double>(nx)));
editor.add_vertex(ix, x);
}
// Create intervals
for (std::size_t ix = 0; ix < nx; ix++)
{
std::vector<std::size_t> cell(2);
cell[0] = ix; cell[1] = ix + 1;
editor.add_cell(ix, cell);
}
// Close mesh editor
editor.close();
// Broadcast mesh according to parallel policy
if (MPI::is_broadcaster(this->mpi_comm()))
{
std::cout << "Building mesh (dist 0a)" << std::endl;
MeshPartitioning::build_distributed_mesh(*this);
std::cout << "Building mesh (dist 1a)" << std::endl;
return;
}
}
示例7: Mesh
//-----------------------------------------------------------------------------
UnitDiscMesh::UnitDiscMesh(MPI_Comm comm, std::size_t n,
std::size_t degree, std::size_t gdim)
: Mesh(comm)
{
dolfin_assert(n > 0);
dolfin_assert(gdim == 2 or gdim == 3);
dolfin_assert(degree == 1 or degree == 2);
MeshEditor editor;
editor.open(*this, 2, gdim, degree);
editor.init_vertices_global(1 + 3*n*(n + 1),
1 + 3*n*(n + 1));
std::size_t c = 0;
editor.add_vertex(c, Point(0,0,0));
++c;
for (std::size_t i = 1; i <= n; ++i)
for (std::size_t j = 0; j < 6*i; ++j)
{
double r = (double)i/(double)n;
double th = 2*M_PI*(double)j/(double)(6*i);
double x = r*cos(th);
double y = r*sin(th);
editor.add_vertex(c, Point(x, y, 0));
++c;
}
editor.init_cells(6*n*n);
c = 0;
std::size_t base_i = 0;
std::size_t row_i = 1;
for (std::size_t i = 1; i <= n; ++i)
{
std::size_t base_m = base_i;
base_i = 1 + 3*i*(i - 1);
std::size_t row_m = row_i;
row_i = 6*i;
for (std::size_t k = 0; k != 6; ++k)
for (std::size_t j = 0; j < (i*2 - 1); ++j)
{
std::size_t i0, i1, i2;
if (j%2 == 0)
{
i0 = base_i + (k*i + j/2)%row_i;
i1 = base_i + (k*i + j/2 + 1)%row_i;
i2 = base_m + (k*(i-1) + j/2)%row_m;
}
else
{
i0 = base_m + (k*(i-1) + j/2)%row_m;
i1 = base_m + (k*(i-1) + j/2 + 1)%row_m;
i2 = base_i + (k*i + j/2 + 1)%row_i;
}
editor.add_cell(c, i0, i1, i2);
++c;
}
}
// Initialise entities required for this degree polynomial mesh
// and allocate space for the point coordinate data
if (degree == 2)
{
editor.init_entities();
for (EdgeIterator e(*this); !e.end(); ++e)
{
Point v0 = Vertex(*this, e->entities(0)[0]).point();
Point v1 = Vertex(*this, e->entities(0)[1]).point();
Point pt = e->midpoint();
if (std::abs(v0.norm() - 1.0) < 1e-6 and
std::abs(v1.norm() - 1.0) < 1e-6)
pt *= v0.norm()/pt.norm();
// Add Edge-based point
editor.add_entity_point(1, 0, e->index(), pt);
}
}
editor.close();
}
示例8: compute_boundary
//-----------------------------------------------------------------------------
void BoundaryComputation::compute_boundary(const Mesh& mesh,
const std::string type,
BoundaryMesh& boundary)
{
// We iterate over all facets in the mesh and check if they are on
// the boundary. A facet is on the boundary if it is connected to
// exactly one cell.
log(TRACE, "Computing boundary mesh.");
bool exterior = true;
bool interior = true;
if (type == "exterior")
interior = false;
else if (type == "interior")
exterior = false;
else if (type != "local")
{
dolfin_error("BoundaryComputation.cpp",
"determine boundary mesh type",
"Unknown boundary type (%d)", type.c_str());
}
// Get my MPI process rank and number of MPI processes
const std::size_t my_rank = MPI::rank(mesh.mpi_comm());
const std::size_t num_processes = MPI::size(mesh.mpi_comm());
// Open boundary mesh for editing
const std::size_t D = mesh.topology().dim();
MeshEditor editor;
editor.open(boundary, mesh.type().facet_type(), D - 1, mesh.geometry().dim());
// Generate facet - cell connectivity if not generated
mesh.init(D - 1, D);
// Temporary arrays for assignment of indices to vertices on the boundary
std::map<std::size_t, std::size_t> boundary_vertices;
// Map of index "owners" (process responsible for assigning global index)
std::map< std::size_t, std::size_t > global_index_owner;
// Shared vertices for full mesh
// FIXME: const_cast
const std::map<unsigned int, std::set<unsigned int>> &
shared_vertices = const_cast<Mesh&>(mesh).topology().shared_entities(0);
// Shared vertices for boundary mesh
std::map<unsigned int, std::set<unsigned int>> shared_boundary_vertices;
if (exterior)
{
// Extract shared vertices if vertex is identified as part of globally
// exterior facet.
std::vector<std::size_t> boundary_global_indices;
for (std::map<unsigned int, std::set<unsigned int>>::const_iterator
sv_it=shared_vertices.begin(); sv_it != shared_vertices.end(); ++sv_it)
{
std::size_t local_mesh_index = sv_it->first;
Vertex v(mesh, local_mesh_index);
for (FacetIterator f(v); !f.end(); ++f)
{
if (f->num_global_entities(D) == 1)
{
const std::size_t global_mesh_index
= mesh.topology().global_indices(0)[local_mesh_index];
shared_boundary_vertices[local_mesh_index] = sv_it->second;
boundary_global_indices.push_back(global_mesh_index);
break;
}
}
}
// Distribute all shared boundary vertices
std::vector<std::vector<std::size_t>> boundary_global_indices_all;
MPI::all_gather(mesh.mpi_comm(), boundary_global_indices,
boundary_global_indices_all);
// Identify and clean up discrepancies between shared vertices of full mesh
// and shared vertices of boundary mesh
for (auto sbv_it = shared_boundary_vertices.begin();
sbv_it != shared_boundary_vertices.end(); )
{
std::size_t local_mesh_index = sbv_it->first;
const std::size_t global_mesh_index
= mesh.topology().global_indices(0)[local_mesh_index];
// Check if this vertex is identified as boundary vertex on
// other processes sharing this vertex
std::set<unsigned int> &other_processes = sbv_it->second;
for (auto op_it=other_processes.begin();
op_it != other_processes.end(); )
{
// Check if vertex is identified as boundary vertex on process *op_it
bool is_boundary_vertex
= (std::find(boundary_global_indices_all[*op_it].begin(),
boundary_global_indices_all[*op_it].end(),
global_mesh_index)
!= boundary_global_indices_all[*op_it].end());
//.........这里部分代码省略.........
示例9: coarsen_cell
//-----------------------------------------------------------------------------
bool LocalMeshCoarsening::coarsen_cell(Mesh& mesh, Mesh& coarse_mesh,
int cellid,
std::vector<int>& old2new_vertex,
std::vector<int>& old2new_cell,
bool coarsen_boundary)
{
cout << "coarsen_cell: " << cellid << endl;
cout << "num_cells: " << mesh.num_cells() << endl;
const std::size_t num_vertices = mesh.size(0);
const std::size_t num_cells = mesh.size(mesh.topology().dim());
auto _mesh = reference_to_no_delete_pointer(mesh);
// Initialise forbidden vertices
MeshFunction<bool> vertex_forbidden(_mesh);
vertex_forbidden.init(0);
for (VertexIterator v(mesh); !v.end(); ++v)
vertex_forbidden[v->index()] = false;
// Initialise boundary vertices
MeshFunction<bool> vertex_boundary(_mesh);
vertex_boundary.init(0);
for (VertexIterator v(mesh); !v.end(); ++v)
vertex_boundary[v->index()] = false;
BoundaryMesh boundary(mesh, "exterior");
MeshFunction<std::size_t>& bnd_vertex_map = boundary.entity_map(0);
for (VertexIterator v(boundary); !v.end(); ++v)
vertex_boundary[bnd_vertex_map[v->index()]] = true;
// If coarsen boundary is forbidden
if (coarsen_boundary == false)
{
for (VertexIterator v(boundary); !v.end(); ++v)
vertex_forbidden[bnd_vertex_map[v->index()]] = true;
}
// Initialise data for finding which vertex to remove
bool _collapse_edge = false;
const unsigned int* edge_vertex;
std::size_t shortest_edge_index = 0;
double lmin, l;
std::size_t num_cells_to_remove = 0;
// Get cell type
const CellType& cell_type = mesh.type();
const Cell cell(mesh, cellid);
MeshEditor editor;
editor.open(coarse_mesh, cell_type.cell_type(),
mesh.topology().dim(), mesh.geometry().dim());
MeshFunction<bool> cell_to_remove(_mesh);
cell_to_remove.init(mesh.topology().dim());
for (CellIterator ci(mesh); !ci.end(); ++ci)
cell_to_remove[ci->index()] = false;
MeshFunction<bool> cell_to_regenerate(_mesh);
cell_to_regenerate.init(mesh.topology().dim());
for (CellIterator ci(mesh); !ci.end(); ++ci)
cell_to_regenerate[ci->index()] = false;
// Find shortest edge of cell c
_collapse_edge = false;
lmin = 1.0e10*cell.diameter();
for (EdgeIterator e(cell); !e.end(); ++e)
{
edge_vertex = e->entities(0);
if (!vertex_forbidden[edge_vertex[0]] || !vertex_forbidden[edge_vertex[1]])
{
l = e->length();
if ( lmin > l )
{
lmin = l;
shortest_edge_index = e->index();
_collapse_edge = true;
}
}
}
Edge shortest_edge(mesh, shortest_edge_index);
// Decide which vertex to remove
std::size_t vert2remove_idx = 0;
// If at least one vertex should be removed
if ( _collapse_edge == true )
{
edge_vertex = shortest_edge.entities(0);
if(vertex_forbidden[edge_vertex[0]] &&
vertex_forbidden[edge_vertex[1]])
{
// Both vertices are forbidden, cannot coarsen
cout << "both vertices forbidden" << endl;
//.........这里部分代码省略.........
示例10: refine
//-----------------------------------------------------------------------------
void UniformMeshRefinement::refine(Mesh& refined_mesh,
const Mesh& mesh)
{
not_working_in_parallel("UniformMeshRefinement::refine");
log(TRACE, "Refining simplicial mesh uniformly.");
// Check that refined_mesh and mesh are not the same
if (&refined_mesh == &mesh)
{
dolfin_error("UniformMeshRefinement.cpp",
"refine mesh",
"Refined_mesh and mesh point to the same object");
}
// Generate cell - edge connectivity if not generated
mesh.init(mesh.topology().dim(), 1);
// Generate edge - vertex connectivity if not generated
mesh.init(1, 0);
// Mesh needs to be ordered (so we can pick right combination of vertices/edges)
if (!mesh.ordered())
dolfin_error("UniformMeshRefinement.cpp",
"refine mesh",
"Mesh is not ordered according to the UFC numbering convention, consider calling mesh.order()");
// Get cell type
const CellType& cell_type = mesh.type();
// Open new mesh for editing
MeshEditor editor;
editor.open(refined_mesh, cell_type.cell_type(),
mesh.topology().dim(), mesh.geometry().dim());
// Get size of mesh
const std::size_t num_vertices = mesh.size(0);
const std::size_t num_edges = mesh.size(1);
const std::size_t num_cells = mesh.size(mesh.topology().dim());
// Specify number of vertices and cells
editor.init_vertices_global(num_vertices + num_edges, num_vertices + num_edges);
editor.init_cells_global(ipow(2, mesh.topology().dim())*num_cells,
ipow(2, mesh.topology().dim())*num_cells);
// Add old vertices
std::size_t vertex = 0;
for (VertexIterator v(mesh); !v.end(); ++v)
{
editor.add_vertex(vertex, v->point());
vertex++;
}
// Add new vertices
for (EdgeIterator e(mesh); !e.end(); ++e)
{
editor.add_vertex(vertex, e->midpoint());
vertex++;
}
// Add cells
std::size_t current_cell = 0;
for (CellIterator c(mesh); !c.end(); ++c)
cell_type.refine_cell(*c, editor, current_cell);
// Close editor
editor.close();
// Make sure that mesh is ordered after refinement
//refined_mesh.order();
}
示例11: main
int main(int argc, char *argv[]) {
if (argc < 3 ) {
std::cout<< "Usage: ./extract <checkpoint> <num>" << std::endl;
return 0;
}
std::ostringstream _fname;
_fname << argv[1] << "_";
std::vector<std::string> chkp_files;
for (int i = 0; i < atoi(argv[2]); i++) {
std::ostringstream tmp;
tmp << _fname.str();
tmp << i << ".chkp";
chkp_files.push_back(tmp.str());
}
CellType::Type type;
double t;
unsigned int id, tdim, gdim, num_vertices, num_cells, num_entities;
std::ifstream in;
std::list<dVertex> vlist;
std::list<dCell> dmesh;
for(std::vector<std::string>::iterator it = chkp_files.begin();
it != chkp_files.end(); ++it) {
in.open(it->c_str(), std::ifstream::binary);
if(in.good()) {
in.read((char *)&id, sizeof(unsigned int));
in.read((char *)&t, sizeof(double));
in.read((char *)&type, sizeof(CellType::Type));
in.read((char *)&tdim, sizeof(unsigned int));
in.read((char *)&gdim, sizeof(unsigned int));
in.read((char *)&num_vertices, sizeof(unsigned int));
in.read((char *)&num_cells, sizeof(unsigned int));
in.read((char *)&num_entities, sizeof(unsigned int));
double *coords = new double[gdim *num_vertices];
in.read((char *)coords, (gdim * num_vertices) * sizeof(double));
std::list<dVertex> _vlist;
int vi = 0;
for(unsigned int i = 0; i < gdim * num_vertices; i += gdim) {
switch(gdim)
{
case 2:
_vlist.push_back(dVertex(vi++, Point(coords[i], coords[i+1]))); break;
case 3:
_vlist.push_back(dVertex(vi++, Point(coords[i], coords[i+1], coords[i+2]))); break;
}
}
delete[] coords;
unsigned int *cells = new unsigned int[num_entities * num_cells];
in.read((char *)cells, (num_entities * num_cells) * sizeof(unsigned int));
unsigned int *mapping = new unsigned int[_vlist.size()];
in.read((char *)mapping, _vlist.size() * sizeof(unsigned int));
unsigned int *mp = &mapping[0];
std::map<unsigned int, unsigned int> vmap;
for(std::list<dVertex>::iterator it = _vlist.begin();
it != _vlist.end(); ++it)
vmap[it->id] = *(mp++);
delete[] mapping;
Array<unsigned int> v;
for(unsigned int i = 0; i < num_entities * num_cells; i += num_entities) {
v.clear();
for(unsigned int j = 0; j < num_entities; j++)
v.push_back(vmap[cells[i+j]]);
dmesh.push_back(dCell(v));
}
delete[] cells;
unsigned int num_ghost;
in.read((char *)&num_ghost, sizeof(unsigned int));
unsigned int *ghosts = new unsigned int[2 * num_ghost];
in.read((char *)ghosts, 2*num_ghost * sizeof(unsigned int));
std::set<unsigned int> ghost_set;
for (unsigned int i = 0; i < 2 * num_ghost; i += 2)
ghost_set.insert(ghosts[i]);
delete[] ghosts;
for(std::list<dVertex>::iterator it = _vlist.begin();
it != _vlist.end(); ++it)
if(ghost_set.find(it->id) == ghost_set.end())
vlist.push_back(dVertex(vmap[it->id], it->p));
}
in.close();
}
Mesh mesh;
//.........这里部分代码省略.........
示例12: renumber_by_color
//-----------------------------------------------------------------------------
dolfin::Mesh MeshRenumbering::renumber_by_color(const Mesh& mesh,
const std::vector<std::size_t> coloring_type)
{
// Start timer
Timer timer("Renumber mesh by color");
// Get some some mesh
const std::size_t tdim = mesh.topology().dim();
const std::size_t gdim = mesh.geometry().dim();
const std::size_t num_vertices = mesh.num_vertices();
const std::size_t num_cells = mesh.num_cells();
// Check that requested coloring is a cell coloring
if (coloring_type[0] != tdim)
{
dolfin_error("MeshRenumbering.cpp",
"renumber mesh by color",
"Coloring is not a cell coloring: only cell colorings are supported");
}
// Compute renumbering
std::vector<double> new_coordinates;
std::vector<std::size_t> new_connections;
MeshRenumbering::compute_renumbering(mesh, coloring_type, new_coordinates,
new_connections);
// Create new mesh
Mesh new_mesh;
// Create mesh editor
MeshEditor editor;
editor.open(new_mesh, mesh.type().cell_type(), tdim, gdim);
editor.init_cells(num_cells);
editor.init_vertices(num_vertices);
// Add vertices
dolfin_assert(new_coordinates.size() == num_vertices*gdim);
for (std::size_t i = 0; i < num_vertices; ++i)
{
std::vector<double> x(gdim);
for (std::size_t j = 0; j < gdim; ++j)
x[j] = new_coordinates[i*gdim + j];
editor.add_vertex(i, x);
}
cout << "Done adding vertices" << endl;
// Add cells
dolfin_assert(new_coordinates.size() == num_vertices*gdim);
const std::size_t vertices_per_cell = mesh.type().num_entities(0);
for (std::size_t i = 0; i < num_cells; ++i)
{
std::vector<std::size_t> c(vertices_per_cell);
std::copy(new_connections.begin() + i*vertices_per_cell,
new_connections.begin() + i*vertices_per_cell + vertices_per_cell,
c.begin());
editor.add_cell(i, c);
}
editor.close();
cout << "Close editor" << endl;
// Initialise coloring data
typedef std::map<const std::vector<std::size_t>, std::pair<std::vector<std::size_t>,
std::vector<std::vector<std::size_t> > > >::const_iterator ConstMeshColoringData;
// Get old coloring
ConstMeshColoringData mesh_coloring
= mesh.topology().coloring.find(coloring_type);
if (mesh_coloring == mesh.topology().coloring.end())
{
dolfin_error("MeshRenumbering.cpp",
"renumber mesh by color",
"Requested mesh coloring has not been computed");
}
// Get old coloring data
const std::vector<std::size_t>& colors = mesh_coloring->second.first;
const std::vector<std::vector<std::size_t> >&
entities_of_color = mesh_coloring->second.second;
dolfin_assert(colors.size() == num_cells);
dolfin_assert(!entities_of_color.empty());
const std::size_t num_colors = entities_of_color.size();
// New coloring data
dolfin_assert(new_mesh.topology().coloring.empty());
std::vector<std::size_t> new_colors(colors.size());
std::vector<std::vector<std::size_t> > new_entities_of_color(num_colors);
std::size_t current_cell = 0;
for (std::size_t color = 0; color < num_colors; color++)
{
// Get the array of cell indices of current color
const std::vector<std::size_t>& colored_cells = entities_of_color[color];
std::vector<std::size_t>& new_colored_cells = new_entities_of_color[color];
// Update cell color data
for (std::size_t i = 0; i < colored_cells.size(); i++)
//.........这里部分代码省略.........
示例13: init
//-----------------------------------------------------------------------------
void SubMesh::init(const Mesh& mesh,
const std::vector<std::size_t>& sub_domains,
std::size_t sub_domain)
{
// Open mesh for editing
MeshEditor editor;
const std::size_t D = mesh.topology().dim();
editor.open(*this, mesh.type().cell_type(), D,
mesh.geometry().dim());
// Build set of cells that are in sub-mesh
std::vector<bool> parent_cell_in_subdomain(mesh.num_cells(), false);
std::set<std::size_t> submesh_cells;
for (CellIterator cell(mesh); !cell.end(); ++cell)
{
if (sub_domains[cell->index()] == sub_domain)
{
parent_cell_in_subdomain[cell->index()] = true;
submesh_cells.insert(cell->index());
}
}
// Map from parent vertex index to submesh vertex index
std::map<std::size_t, std::size_t> parent_to_submesh_vertex_indices;
// Map from submesh cell to parent cell
std::vector<std::size_t> submesh_cell_parent_indices;
submesh_cell_parent_indices.reserve(submesh_cells.size());
// Vector from parent cell index to submesh cell index
std::vector<std::size_t> parent_to_submesh_cell_indices(mesh.num_cells(), 0);
// Add sub-mesh cells
editor.init_cells_global(submesh_cells.size(), submesh_cells.size());
std::size_t current_cell = 0;
std::size_t current_vertex = 0;
for (std::set<std::size_t>::iterator cell_it = submesh_cells.begin();
cell_it != submesh_cells.end(); ++cell_it)
{
// Data structure to hold new vertex indices for cell
std::vector<std::size_t> cell_vertices;
// Create cell
Cell cell(mesh, *cell_it);
// Iterate over cell vertices
for (VertexIterator vertex(cell); !vertex.end(); ++vertex)
{
const std::size_t parent_vertex_index = vertex->index();
// Look for parent vertex in map
std::map<std::size_t, std::size_t>::iterator vertex_it
= parent_to_submesh_vertex_indices.find(parent_vertex_index);
// If vertex has been inserted, get new index, otherwise
// increment and insert
std::size_t submesh_vertex_index = 0;
if (vertex_it != parent_to_submesh_vertex_indices.end())
submesh_vertex_index = vertex_it->second;
else
{
submesh_vertex_index = current_vertex++;
parent_to_submesh_vertex_indices[parent_vertex_index]
= submesh_vertex_index;
}
// Add vertex to list of cell vertices (new indexing)
cell_vertices.push_back(submesh_vertex_index);
}
// Add parent cell index to list
submesh_cell_parent_indices.push_back(cell.index());
// Store parent cell -> submesh cell indices
parent_to_submesh_cell_indices[cell.index()] = current_cell;
// Add cell to mesh
editor.add_cell(current_cell++, cell_vertices);
}
// Vector to hold submesh vertex -> parent vertex
std::vector<std::size_t> parent_vertex_indices;
parent_vertex_indices.resize(parent_to_submesh_vertex_indices.size());
// Initialise mesh editor
editor.init_vertices_global(parent_to_submesh_vertex_indices.size(),
parent_to_submesh_vertex_indices.size());
// Add vertices
for (std::map<std::size_t, std::size_t>::iterator it
= parent_to_submesh_vertex_indices.begin();
it != parent_to_submesh_vertex_indices.end(); ++it)
{
Vertex vertex(mesh, it->first);
if (MPI::size(mesh.mpi_comm()) > 1)
error("SubMesh::init not working in parallel");
// FIXME: Get global vertex index
editor.add_vertex(it->second, vertex.point());
//.........这里部分代码省略.........
示例14: Mesh
//-----------------------------------------------------------------------------
UnitHexMesh::UnitHexMesh(MPI_Comm comm, std::size_t nx, std::size_t ny,
std::size_t nz) : Mesh(comm)
{
// Receive mesh according to parallel policy
if (MPI::is_receiver(this->mpi_comm()))
{
MeshPartitioning::build_distributed_mesh(*this);
return;
}
MeshEditor editor;
editor.open(*this, CellType::hexahedron, 3, 3);
// Create vertices and cells:
editor.init_vertices_global((nx + 1)*(ny + 1)*(nz + 1),
(nx + 1)*(ny + 1)*(nz + 1));
editor.init_cells_global(nx*ny*nz, nx*ny*nz);
// Storage for vertices
std::vector<double> x(3);
const double a = 0.0;
const double b = 1.0;
const double c = 0.0;
const double d = 1.0;
const double e = 0.0;
const double f = 1.0;
// Create main vertices:
std::size_t vertex = 0;
for (std::size_t iz = 0; iz <= nz; iz++)
{
x[2] = e + ((static_cast<double>(iz))*(f - e)/static_cast<double>(nz));
for (std::size_t iy = 0; iy <= ny; iy++)
{
x[1] = c + ((static_cast<double>(iy))*(d - c)/static_cast<double>(ny));
for (std::size_t ix = 0; ix <= nx; ix++)
{
x[0] = a + ((static_cast<double>(ix))*(b - a)/static_cast<double>(nx));
editor.add_vertex(vertex, x);
vertex++;
}
}
}
// Create cuboids
std::size_t cell = 0;
std::vector<std::size_t> v(8);
for (std::size_t iz = 0; iz < nz; iz++)
for (std::size_t iy = 0; iy < ny; iy++)
for (std::size_t ix = 0; ix < nx; ix++)
{
v[0] = (iz*(ny + 1) + iy)*(nx + 1) + ix;
v[1] = v[0] + 1;
v[2] = v[0] + (nx + 1);
v[3] = v[1] + (nx + 1);
v[4] = v[0] + (nx + 1)*(ny + 1);
v[5] = v[1] + (nx + 1)*(ny + 1);
v[6] = v[2] + (nx + 1)*(ny + 1);
v[7] = v[3] + (nx + 1)*(ny + 1);
editor.add_cell(cell, v);
++cell;
}
// Close mesh editor
editor.close();
// Broadcast mesh according to parallel policy
if (MPI::is_broadcaster(this->mpi_comm()))
{
MeshPartitioning::build_distributed_mesh(*this);
return;
}
}
示例15: refine_marked
//-----------------------------------------------------------------------------
void RegularCutRefinement::refine_marked(Mesh& refined_mesh,
const Mesh& mesh,
const std::vector<int>& refinement_markers,
const IndexSet& marked_edges)
{
// Count the number of cells in refined mesh
std::size_t num_cells = 0;
// Data structure to hold a cell
std::vector<std::size_t> cell_data(3);
for (CellIterator cell(mesh); !cell.end(); ++cell)
{
const int marker = refinement_markers[cell->index()];
switch (marker)
{
case no_refinement:
num_cells += 1;
break;
case regular_refinement:
num_cells += 4;
break;
case backtrack_bisection:
num_cells += 2;
break;
case backtrack_bisection_refine:
num_cells += 3;
break;
default:
num_cells += 2;
}
}
// Initialize mesh editor
const std::size_t num_vertices = mesh.num_vertices() + marked_edges.size();
MeshEditor editor;
editor.open(refined_mesh, mesh.topology().dim(), mesh.geometry().dim());
editor.init_vertices(num_vertices);
editor.init_cells(num_cells);
// Set vertex coordinates
std::size_t current_vertex = 0;
for (VertexIterator vertex(mesh); !vertex.end(); ++vertex)
{
editor.add_vertex(current_vertex, vertex->point());
current_vertex++;
}
for (std::size_t i = 0; i < marked_edges.size(); i++)
{
Edge edge(mesh, marked_edges[i]);
editor.add_vertex(current_vertex, edge.midpoint());
current_vertex++;
}
// Get bisection data for old mesh
const std::size_t D = mesh.topology().dim();
const std::vector<std::size_t>* bisection_twins = NULL;
if (mesh.data().exists("bisection_twins", D))
bisection_twins = &(mesh.data().array("bisection_twins", D));
// Markers for bisected cells pointing to their bisection twins in
// refined mesh
std::vector<std::size_t>& refined_bisection_twins
= refined_mesh.data().create_array("bisection_twins", D);
refined_bisection_twins.resize(num_cells);
for (std::size_t i = 0; i < num_cells; i++)
refined_bisection_twins[i] = i;
// Mapping from old to new unrefined cells (-1 means refined or not
// yet processed)
std::vector<int> unrefined_cells(mesh.num_cells());
std::fill(unrefined_cells.begin(), unrefined_cells.end(), -1);
// Iterate over all cells and add new cells
std::size_t current_cell = 0;
std::vector<std::vector<std::size_t> > cells(4, std::vector<std::size_t>(3));
for (CellIterator cell(mesh); !cell.end(); ++cell)
{
// Get marker
const int marker = refinement_markers[cell->index()];
if (marker == no_refinement)
{
// No refinement: just copy cell to new mesh
std::vector<std::size_t> vertices;
for (VertexIterator vertex(*cell); !vertex.end(); ++vertex)
vertices.push_back(vertex->index());
editor.add_cell(current_cell++, vertices);
// Store mapping to new cell index
unrefined_cells[cell->index()] = current_cell - 1;
// Remember unrefined bisection twins
if (bisection_twins)
{
const std::size_t bisection_twin = (*bisection_twins)[cell->index()];
const int twin_marker = refinement_markers[bisection_twin];
dolfin_assert(twin_marker == no_refinement);
//.........这里部分代码省略.........