本文整理汇总了C++中Matrix4x4f::Inverse方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix4x4f::Inverse方法的具体用法?C++ Matrix4x4f::Inverse怎么用?C++ Matrix4x4f::Inverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Matrix4x4f
的用法示例。
在下文中一共展示了Matrix4x4f::Inverse方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void BoneBridgeCAL3D::SetModelSpaceTransform(const Matrix4x4f& modelSpaceTransform) const
{
// calculate the transform as relative to the parent bone
Matrix4x4f localModelSpaceTransform = Matrix4x4f::Identity();
{
// for now use absolute model space positioning
localModelSpaceTransform = modelSpaceTransform;
// divide by any existing parent's model space position
if (const Bone* parent = GetParent())
{
//const osg::Matrix parentTransform = ConvertKerneltoOSG(parent->GetModelSpaceTransform());
const Matrix4x4f parentTransform = parent->GetModelSpaceTransform();
// get inverse of parent transform
const Matrix4x4f invParentTransform = parentTransform.Inverse();
localModelSpaceTransform *= invParentTransform;
}
}
// now update the cal3d side from this new model space information
#if WRITE_CAL3D_BONE_TRANSLATION
// update model space position
{
Vec3f kernelPosVec = localModelSpaceTransform.GetTranslation();
CalVector calPosVec;
for (int i = 0; i < 3; ++i)
{
calPosVec[i] = kernelPosVec[i];
}
mpCalBone->setTranslation(calPosVec); // setting the relative position
}
#endif
#if WRITE_CAL3D_BONE_ROTATION
// update model space orientation
{
const Quaternionf& kernelRotQuat = localModelSpaceTransform.GetRotate();
CalQuaternion calRotQuat;
calRotQuat = ConvertKerneltoCAL3D(kernelRotQuat);
mpCalBone->setRotation(calRotQuat); // setting the relative orientation
}
#endif
}
示例2: M
std::vector<Vec3f> BoneBridgeCAL3D::ComputeBoundingBoxCorners(const CalBoundingBox& box) const
{
std::vector<Vec3f> corners;
// what we have is a set of 6 planes, stored as plane equation variables
// what we need is 8 points for drawing a box
// each point is the intersection of three of the planes
// what we need to do is choose each set of 3 planes that intersects at a viable corner
// begin at the beginning
corners.clear();
// iterate through all combinations of distinct planes a, b, c
for (int a = 0; a < 6-2; ++a)
{
for (int b = a+1; b < 6-1; ++b)
{
// if a and b are parallel, skip
if (PlanesParallel(box.plane[a], box.plane[b]))
{
continue;
}
for (int c = b+1; c < 6-0; ++c)
{
// the three planes indexed a, b, c potentially intersect at a viable corner
// if any two are parallel, we should skip this trio
// getting this far, we know a and b are not parallel -- let's check a,c and b,c
if (PlanesParallel(box.plane[a], box.plane[c]) || PlanesParallel(box.plane[b], box.plane[c]))
{
continue;
}
// we have three orthogonal planes, they should intersect at a single point, serving as a corner to the box
const Matrix4x4f M(
box.plane[a].a, box.plane[a].b, box.plane[a].c, 0,
box.plane[b].a, box.plane[b].b, box.plane[b].c, 0,
box.plane[c].a, box.plane[c].b, box.plane[c].c, 0,
0, 0, 0, 1);
const Matrix4x4f Mi = M.Inverse();
{
const Vec4f offsets(
box.plane[a].d,
box.plane[b].d,
box.plane[c].d,
0.0f);
const Vec4f corner = Mi * offsets;
const Vec3f fixedCorner(corner[X], corner[Y], -corner[Z]);
corners.push_back(fixedCorner);
}
}
}
}
// make sure we're all good
assert(corners.size() == 8);
return corners;
}