本文整理汇总了C++中Intersections::used方法的典型用法代码示例。如果您正苦于以下问题:C++ Intersections::used方法的具体用法?C++ Intersections::used怎么用?C++ Intersections::used使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Intersections
的用法示例。
在下文中一共展示了Intersections::used方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: intersect3
bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
bool selfIntersect = c1 == c2;
if (!selfIntersect) {
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
}
// If an end point and a second point very close to the end is returned, the second
// point may have been detected because the approximate quads
// intersected at the end and close to it. Verify that the second point is valid.
if (i.used() <= 1 || i.coincidentUsed()) {
return result;
}
_Point pt[2];
if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(1);
}
if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(i.used() - 2);
}
return result;
}
示例2: intersect
int intersect(const Cubic& c, Intersections& i) {
// check to see if x or y end points are the extrema. Are other quick rejects possible?
if (ends_are_extrema_in_x_or_y(c)) {
return false;
}
(void) intersect3(c, c, i);
if (i.used() > 0) {
SkASSERT(i.used() == 1);
if (i.fT[0][0] > i.fT[1][0]) {
SkTSwap(i.fT[0][0], i.fT[1][0]);
}
}
return i.used();
}
示例3: intersect
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
Cubic sub1, sub2;
// FIXME: carry last subdivide and reduceOrder result with cubic
sub_divide(cubic1, minT1, maxT1, sub1);
sub_divide(cubic2, minT2, maxT2, sub2);
Intersections i;
intersect2(sub1, sub2, i);
if (i.used() == 0) {
return false;
}
double x1, y1, x2, y2;
t1 = minT1 + i.fT[0][0] * (maxT1 - minT1);
t2 = minT2 + i.fT[1][0] * (maxT2 - minT2);
xy_at_t(cubic1, t1, x1, y1);
xy_at_t(cubic2, t2, x2, y2);
if (AlmostEqualUlps(x1, x2) && AlmostEqualUlps(y1, y2)) {
return true;
}
double half1 = (minT1 + maxT1) / 2;
double half2 = (minT2 + maxT2) / 2;
++depth;
bool result;
if (depth & 1) {
result = intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2)
|| intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2);
} else {
result = intersect(minT1, maxT1, minT2, half2) || intersect(minT1, maxT1, half2, maxT2)
|| intersect(minT1, half1, minT2, maxT2) || intersect(half1, maxT1, minT2, maxT2);
}
--depth;
return result;
}
示例4: closeEnd
static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
int last = i.used() - 1;
if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
return false;
}
pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
return true;
}
示例5: intersect
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
SkTDArray<double> ts;
double precision = calcPrecision(cubic);
cubic_to_quadratics(cubic, precision, ts);
double tStart = 0;
Cubic part;
int tsCount = ts.count();
for (int idx = 0; idx <= tsCount; ++idx) {
double t = idx < tsCount ? ts[idx] : 1;
Quadratic q1;
sub_divide(cubic, tStart, t, part);
demote_cubic_to_quad(part, q1);
Intersections locals;
intersect2(q1, quad, locals);
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double globalT = tStart + (t - tStart) * locals.fT[0][tIdx];
i.insertOne(globalT, 0);
globalT = locals.fT[1][tIdx];
i.insertOne(globalT, 1);
}
tStart = t;
}
return i.used();
}
示例6: CubicIntersection_Test
void CubicIntersection_Test() {
for (size_t index = firstCubicIntersectionTest; index < tests_count; ++index) {
const Cubic& cubic1 = tests[index][0];
const Cubic& cubic2 = tests[index][1];
Cubic reduce1, reduce2;
int order1 = reduceOrder(cubic1, reduce1, kReduceOrder_NoQuadraticsAllowed);
int order2 = reduceOrder(cubic2, reduce2, kReduceOrder_NoQuadraticsAllowed);
if (order1 < 4) {
printf("%s [%d] cubic1 order=%d\n", __FUNCTION__, (int) index, order1);
continue;
}
if (order2 < 4) {
printf("%s [%d] cubic2 order=%d\n", __FUNCTION__, (int) index, order2);
continue;
}
if (implicit_matches(reduce1, reduce2)) {
printf("%s [%d] coincident\n", __FUNCTION__, (int) index);
continue;
}
Intersections tIntersections;
intersect(reduce1, reduce2, tIntersections);
if (!tIntersections.intersected()) {
printf("%s [%d] no intersection\n", __FUNCTION__, (int) index);
continue;
}
for (int pt = 0; pt < tIntersections.used(); ++pt) {
double tt1 = tIntersections.fT[0][pt];
double tx1, ty1;
xy_at_t(cubic1, tt1, tx1, ty1);
double tt2 = tIntersections.fT[1][pt];
double tx2, ty2;
xy_at_t(cubic2, tt2, tx2, ty2);
if (!AlmostEqualUlps(tx1, tx2)) {
printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
if (!AlmostEqualUlps(ty1, ty2)) {
printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
}
}
}
示例7: standardTestCases
static void standardTestCases() {
for (size_t index = firstQuadIntersectionTest; index < quadraticTests_count; ++index) {
const Quadratic& quad1 = quadraticTests[index][0];
const Quadratic& quad2 = quadraticTests[index][1];
Quadratic reduce1, reduce2;
int order1 = reduceOrder(quad1, reduce1, kReduceOrder_TreatAsFill);
int order2 = reduceOrder(quad2, reduce2, kReduceOrder_TreatAsFill);
if (order1 < 3) {
printf("[%d] quad1 order=%d\n", (int) index, order1);
}
if (order2 < 3) {
printf("[%d] quad2 order=%d\n", (int) index, order2);
}
if (order1 == 3 && order2 == 3) {
Intersections intersections;
intersect2(reduce1, reduce2, intersections);
if (intersections.intersected()) {
for (int pt = 0; pt < intersections.used(); ++pt) {
double tt1 = intersections.fT[0][pt];
double tx1, ty1;
xy_at_t(quad1, tt1, tx1, ty1);
double tt2 = intersections.fT[1][pt];
double tx2, ty2;
xy_at_t(quad2, tt2, tx2, ty2);
if (!approximately_equal(tx1, tx2)) {
printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
if (!approximately_equal(ty1, ty2)) {
printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2);
}
}
}
}
}
}
示例8: calcPrecision
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
i.upDepth();
bool result = false;
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
// OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Quadratic s1;
int o1 = quadPart(cubic1, t1Start, t1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
if (cubic1 == cubic2 && t1Start >= t2Start) {
t2Start = t2;
continue;
}
Quadratic s2;
int o2 = quadPart(cubic2, t2Start, t2, s2);
#if ONE_OFF_DEBUG
char tab[] = " ";
if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
&& tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
Cubic cSub1, cSub2;
sub_divide(cubic1, t1Start, t1, cSub1);
sub_divide(cubic2, t2Start, t2, cSub2);
SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
t1Start, t1, t2Start, t2);
Intersections xlocals;
intersectWithOrder(s1, o1, s2, o2, xlocals);
SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
}
#endif
Intersections locals;
intersectWithOrder(s1, o1, s2, o2, locals);
double coStart[2] = { -1 };
_Point coPoint;
int tCount = locals.used();
for (int tIdx = 0; tIdx < tCount; ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1 = xy_at_t(cubic1, to1);
_Point p2 = xy_at_t(cubic2, to2);
if (p1.approximatelyEqual(p2)) {
if (locals.fIsCoincident[0] & 1 << tIdx) {
if (coStart[0] < 0) {
coStart[0] = to1;
coStart[1] = to2;
coPoint = p1;
} else {
i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
coStart[0] = -1;
}
result = true;
} else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(to2, to1, p1);
} else {
i.insert(to1, to2, p1);
}
result = true;
}
} else {
double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
#if 1
double c1Bottom = tIdx == 0 ? 0 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
double c1Min = SkTMax(c1Bottom, to1 - offset);
double c1Top = tIdx == tCount - 1 ? 1 :
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
double c1Max = SkTMin(c1Top, to1 + offset);
double c2Min = SkTMax(0., to2 - offset);
double c2Max = SkTMin(1., to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
//.........这里部分代码省略.........
示例9: intersectEnd
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
Intersections& i) {
// bool selfIntersect = cubic1 == cubic2;
_Line line;
int t1Index = start ? 0 : 3;
line[0] = cubic1[t1Index];
// don't bother if the two cubics are connnected
#if 0
if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0])
|| line[0].approximatelyEqual(cubic2[3]))) {
return false;
}
#endif
bool result = false;
SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array
for (int index = 0; index < 4; ++index) {
if (index == t1Index) {
continue;
}
_Vector dxy1 = cubic1[index] - line[0];
dxy1 /= gPrecisionUnit;
line[1] = line[0] + dxy1;
_Rect lineBounds;
lineBounds.setBounds(line);
if (!bounds2.intersects(lineBounds)) {
continue;
}
Intersections local;
if (!intersect(cubic2, line, local)) {
continue;
}
for (int idx2 = 0; idx2 < local.used(); ++idx2) {
double foundT = local.fT[0][idx2];
if (approximately_less_than_zero(foundT)
|| approximately_greater_than_one(foundT)) {
continue;
}
if (local.fPt[idx2].approximatelyEqual(line[0])) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(foundT, start ? 0 : 1, line[0]);
} else {
i.insert(start ? 0 : 1, foundT, line[0]);
}
result = true;
} else {
*tVals.append() = local.fT[0][idx2];
}
}
}
if (tVals.count() == 0) {
return result;
}
QSort<double>(tVals.begin(), tVals.end() - 1);
double tMin1 = start ? 0 : 1 - LINE_FRACTION;
double tMax1 = start ? LINE_FRACTION : 1;
int tIdx = 0;
do {
int tLast = tIdx;
while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
++tLast;
}
double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
int lastUsed = i.used();
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
if (lastUsed == i.used()) {
tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0);
tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0);
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
}
tIdx = tLast + 1;
} while (tIdx < tVals.count());
return result;
}
示例10: calcPrecision
// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
// FIXME: this needs to recurse on itself, taking a range of T values and computing the new
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Cubic part1;
sub_divide(cubic1, t1Start, t1, part1);
Quadratic q1;
demote_cubic_to_quad(part1, q1);
// start here;
// should reduceOrder be looser in this use case if quartic is going to blow up on an
// extremely shallow quadratic?
Quadratic s1;
int o1 = reduceOrder(q1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
Cubic part2;
sub_divide(cubic2, t2Start, t2, part2);
Quadratic q2;
demote_cubic_to_quad(part2, q2);
Quadratic s2;
double o2 = reduceOrder(q2, s2);
Intersections locals;
if (o1 == 3 && o2 == 3) {
intersect2(q1, q2, locals);
} else if (o1 <= 2 && o2 <= 2) {
locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0],
locals.fT[1]);
} else if (o1 == 3 && o2 <= 2) {
intersect(q1, (const _Line&) s2, locals);
} else {
SkASSERT(o1 <= 2 && o2 == 3);
intersect(q2, (const _Line&) s1, locals);
for (int s = 0; s < locals.fUsed; ++s) {
SkTSwap(locals.fT[0][s], locals.fT[1][s]);
}
}
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1, p2;
xy_at_t(cubic1, to1, p1.x, p1.y);
xy_at_t(cubic2, to2, p2.x, p2.y);
if (p1.approximatelyEqual(p2)) {
i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2);
} else {
double dt1, dt2;
computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2);
double scale = precisionScale;
if (dt1 > 0.125 || dt2 > 0.125) {
scale /= 2;
SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale);
}
#if SK_DEBUG
++debugDepth;
assert(debugDepth < 10);
#endif
i.swap();
intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.),
cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i);
i.swap();
#if SK_DEBUG
--debugDepth;
#endif
}
}
t2Start = t2;
}
t1Start = t1;
}
return i.intersected();
}