本文整理汇总了C++中Intersections::swap方法的典型用法代码示例。如果您正苦于以下问题:C++ Intersections::swap方法的具体用法?C++ Intersections::swap怎么用?C++ Intersections::swap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Intersections
的用法示例。
在下文中一共展示了Intersections::swap方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: intersect3
bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
bool selfIntersect = c1 == c2;
if (!selfIntersect) {
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
}
// If an end point and a second point very close to the end is returned, the second
// point may have been detected because the approximate quads
// intersected at the end and close to it. Verify that the second point is valid.
if (i.used() <= 1 || i.coincidentUsed()) {
return result;
}
_Point pt[2];
if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(1);
}
if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(i.used() - 2);
}
return result;
}
示例2: intersect2
// FIXME: add intersection of convex null on cubics' ends with the opposite cubic. The hull line
// segments can be constructed to be only as long as the calculated precision suggests. If the hull
// line segments intersect the cubic, then use the intersections to construct a subdivision for
// quadratic curve fitting.
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
#if SK_DEBUG
debugDepth = 0;
#endif
bool result = intersect2(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
return result;
}
示例3: calcPrecision
// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
// FIXME: this needs to recurse on itself, taking a range of T values and computing the new
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Cubic part1;
sub_divide(cubic1, t1Start, t1, part1);
Quadratic q1;
demote_cubic_to_quad(part1, q1);
// start here;
// should reduceOrder be looser in this use case if quartic is going to blow up on an
// extremely shallow quadratic?
Quadratic s1;
int o1 = reduceOrder(q1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
Cubic part2;
sub_divide(cubic2, t2Start, t2, part2);
Quadratic q2;
demote_cubic_to_quad(part2, q2);
Quadratic s2;
double o2 = reduceOrder(q2, s2);
Intersections locals;
if (o1 == 3 && o2 == 3) {
intersect2(q1, q2, locals);
} else if (o1 <= 2 && o2 <= 2) {
locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0],
locals.fT[1]);
} else if (o1 == 3 && o2 <= 2) {
intersect(q1, (const _Line&) s2, locals);
} else {
SkASSERT(o1 <= 2 && o2 == 3);
intersect(q2, (const _Line&) s1, locals);
for (int s = 0; s < locals.fUsed; ++s) {
SkTSwap(locals.fT[0][s], locals.fT[1][s]);
}
}
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1, p2;
xy_at_t(cubic1, to1, p1.x, p1.y);
xy_at_t(cubic2, to2, p2.x, p2.y);
if (p1.approximatelyEqual(p2)) {
i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2);
} else {
double dt1, dt2;
computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2);
double scale = precisionScale;
if (dt1 > 0.125 || dt2 > 0.125) {
scale /= 2;
SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale);
}
#if SK_DEBUG
++debugDepth;
assert(debugDepth < 10);
#endif
i.swap();
intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.),
cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i);
i.swap();
#if SK_DEBUG
--debugDepth;
#endif
}
}
t2Start = t2;
}
t1Start = t1;
}
return i.intersected();
}