本文整理汇总了C++中InputArray::size方法的典型用法代码示例。如果您正苦于以下问题:C++ InputArray::size方法的具体用法?C++ InputArray::size怎么用?C++ InputArray::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类InputArray
的用法示例。
在下文中一共展示了InputArray::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: blendLinear
void cv::blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
int type = _src1.type(), depth = CV_MAT_DEPTH(type);
Size size = _src1.size();
CV_Assert(depth == CV_8U || depth == CV_32F);
CV_Assert(size == _src2.size() && size == _weights1.size() && size == _weights2.size());
CV_Assert(type == _src2.type() && _weights1.type() == CV_32FC1 && _weights2.type() == CV_32FC1);
_dst.create(size, type);
CV_OCL_RUN(_dst.isUMat(),
ocl_blendLinear(_src1, _src2, _weights1, _weights2, _dst))
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), weights1 = _weights1.getMat(),
weights2 = _weights2.getMat(), dst = _dst.getMat();
if (depth == CV_8U)
{
BlendLinearInvoker<uchar> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
else if (depth == CV_32F)
{
BlendLinearInvoker<float> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
}
示例2: CUBIC
void CUBIC(InputArray src, OutputArray dest)
{
int odd_w =0;
int odd_h =0;
if(src.size().width%2!=0)odd_w=1;
if(src.size().height%2!=0)odd_h=1;
Mat im;
copyMakeBorder(src, im,4,4+odd_h,4,4+odd_w,BORDER_REPLICATE);
Mat dst;
//resize(im, dst,Size(im.cols*2,im.rows*2),0,0,INTER_CUBIC);
resize(im, dst,Size(im.cols*2,im.rows*2),0,0,INTER_LINEAR);
warpShift(dst,dst,-0,-0,BORDER_REPLICATE);
Mat(dst(Rect(4,4,src.size().width*2,src.size().height*2))).copyTo(dest);
}
示例3: addNoise
void addNoise(InputArray src_, OutputArray dest_, const double sigma, const double sprate, const int seed)
{
if(seed!=0) cv::theRNG().state = seed;
if (dest_.empty() || dest_.size() != src_.size() || dest_.type() != src_.type()) dest_.create(src_.size(), src_.type());
Mat src = src_.getMat();
Mat dest = dest_.getMat();
if (src.channels() == 1)
{
addNoiseMono(src, dest, sigma);
if (sprate != 0)addNoiseSoltPepperMono(dest, dest, sprate, seed);
return;
}
else
{
vector<Mat> s(src.channels());
vector<Mat> d(src.channels());
split(src, s);
for (int i = 0; i < src.channels(); i++)
{
addNoiseMono(s[i], d[i], sigma);
if (sprate != 0)addNoiseSoltPepperMono(d[i], d[i], sprate, seed);
}
cv::merge(d, dest);
}
if (seed != 0) cv::theRNG().state = cv::getTickCount();
}
示例4: defined
cv::GlBuffer::GlBuffer(InputArray mat_, Usage _usage) : rows_(0), cols_(0), type_(0), usage_(_usage)
{
#ifndef HAVE_OPENGL
(void)mat_;
(void)_usage;
throw_nogl;
#else
int kind = mat_.kind();
Size _size = mat_.size();
int _type = mat_.type();
if (kind == _InputArray::GPU_MAT)
{
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
throw_nocuda;
#else
GpuMat d_mat = mat_.getGpuMat();
impl_ = new Impl(d_mat.rows, d_mat.cols, d_mat.type(), _usage);
impl_->copyFrom(d_mat);
#endif
}
else
{
Mat mat = mat_.getMat();
impl_ = new Impl(mat, _usage);
}
rows_ = _size.height;
cols_ = _size.width;
type_ = _type;
#endif
}
示例5: ocl_integral
static bool ocl_integral( InputArray _src, OutputArray _sum, int sdepth )
{
if ( _src.type() != CV_8UC1 || _src.step() % vlen != 0 || _src.offset() % vlen != 0 ||
!(sdepth == CV_32S || sdepth == CV_32F) )
return false;
ocl::Kernel k1("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc,
format("-D sdepth=%d", sdepth));
if (k1.empty())
return false;
Size size = _src.size(), t_size = Size(((size.height + vlen - 1) / vlen) * vlen, size.width),
ssize(size.width + 1, size.height + 1);
_sum.create(ssize, sdepth);
UMat src = _src.getUMat(), t_sum(t_size, sdepth), sum = _sum.getUMat();
t_sum = t_sum(Range::all(), Range(0, size.height));
int offset = (int)src.offset / vlen, pre_invalid = (int)src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
int sum_offset = (int)sum.offset / vlen;
k1.args(ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(t_sum),
offset, pre_invalid, src.rows, src.cols, (int)src.step, (int)t_sum.step);
size_t gt = ((vcols + 1) / 2) * 256, lt = 256;
if (!k1.run(1, >, <, false))
return false;
ocl::Kernel k2("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc,
format("-D sdepth=%d", sdepth));
k2.args(ocl::KernelArg::PtrReadWrite(t_sum), ocl::KernelArg::PtrWriteOnly(sum),
t_sum.rows, t_sum.cols, (int)t_sum.step, (int)sum.step, sum_offset);
size_t gt2 = t_sum.cols * 32, lt2 = 256;
return k2.run(1, >2, <2, false);
}
示例6: matchTemplate_SQDIFF
static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
{
if (useNaive(_templ.size()))
return( matchTemplateNaive_SQDIFF(_image, _templ, _result));
else
{
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
int type = _image.type(), cn = CV_MAT_CN(type);
ocl::Kernel k("matchTemplate_Prepared_SQDIFF", ocl::imgproc::match_template_oclsrc,
format("-D SQDIFF_PREPARED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
if (k.empty())
return false;
UMat image = _image.getUMat(), templ = _templ.getUMat();
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
UMat result = _result.getUMat();
UMat image_sums, image_sqsums;
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
UMat templ_sqsum;
if (!sumTemplate(_templ, templ_sqsum))
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
size_t globalsize[2] = { result.cols, result.rows };
return k.run(2, globalsize, NULL, false);
}
}
示例7: xmap
void TranslationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, InputArray t,
int interp_mode, int border_mode,
Size dst_size, OutputArray dst) {
projector_.setCameraParams(K, R, t);
Point src_tl, src_br;
detectResultRoi(dst_size, src_tl, src_br);
Size size = src.size();
CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height);
Mat xmap(dst_size, CV_32F);
Mat ymap(dst_size, CV_32F);
float u, v;
for (int y = 0; y < dst_size.height; ++y) {
for (int x = 0; x < dst_size.width; ++x) {
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
xmap.at<float>(y, x) = u - src_tl.x;
ymap.at<float>(y, x) = v - src_tl.y;
}
}
dst.create(dst_size, src.type());
remap(src, dst, xmap, ymap, interp_mode, border_mode);
}
示例8: updateBackgroundModel
void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
{
CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image
Mat maskImg = _mask.getMat();
//#pragma omp parallel
for (int i = 0; i < imHeight; ++i)
{
//#pragma omp parallel
for (int j = 0; j < imWidth; ++j)
{
if (frameNum <= numInitializationFrames + 1)
{
// insert previously observed feature into the histogram. -1.0 parameter indicates training.
pixels[i*imWidth+j].insertFeature(-1.0);
if (frameNum >= numInitializationFrames+1) // training is done, normalize
{
pixels[i*imWidth+j].normalizeHistogram();
}
}
// if mask is 0, pixel is identified as a background pixel, so update histogram.
else if (maskImg.at<uchar>(i,j) == 0)
{
pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration.
}
}
}
}
示例9: repeat
void repeat(InputArray _src, int ny, int nx, OutputArray _dst)
{
CV_Assert( _src.dims() <= 2 );
CV_Assert( ny > 0 && nx > 0 );
Size ssize = _src.size();
_dst.create(ssize.height*ny, ssize.width*nx, _src.type());
CV_OCL_RUN(_dst.isUMat(),
ocl_repeat(_src, ny, nx, _dst))
Mat src = _src.getMat(), dst = _dst.getMat();
Size dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width );
}
示例10: update
ObjectState HTCamshift::update(InputArray _rgbFrame, InputArray _depthFrame, InputArray _mask) {
CV_Assert(_rgbFrame.size() == rgbFrameSize && _rgbFrame.type() == rgbFrameType);
if(useDepth == true) {
CV_Assert(_depthFrame.size() == depthFrameSize && _depthFrame.type() == depthFrameType);
}
split(_rgbFrame, channels);
if(state.valid == false) {
calculateFeatureSet(_rgbFrame, _depthFrame);
}
calculateBackPro(_rgbFrame, _depthFrame, _mask);
Rect bounding = state.location.boundingRect();
state.location = CamShift(backPro, bounding, term);
return state;
}
示例11: ocl_fastNlMeansDenoising
static bool ocl_fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
int type = _src.type(), cn = CV_MAT_CN(type);
Size size = _src.size();
if ( type != CV_8UC1 || type != CV_8UC2 || type != CV_8UC4 )
return false;
int templateWindowHalfWize = templateWindowSize / 2;
int searchWindowHalfSize = searchWindowSize / 2;
templateWindowSize = templateWindowHalfWize * 2 + 1;
searchWindowSize = searchWindowHalfSize * 2 + 1;
int nblocksx = divUp(size.width, BLOCK_COLS), nblocksy = divUp(size.height, BLOCK_ROWS);
int almostTemplateWindowSizeSqBinShift = -1;
char cvt[2][40];
String opts = format("-D OP_CALC_FASTNLMEANS -D TEMPLATE_SIZE=%d -D SEARCH_SIZE=%d"
" -D uchar_t=%s -D int_t=%s -D BLOCK_COLS=%d -D BLOCK_ROWS=%d"
" -D CTA_SIZE=%d -D TEMPLATE_SIZE2=%d -D SEARCH_SIZE2=%d"
" -D convert_int_t=%s -D cn=%d -D CTA_SIZE2=%d -D convert_uchar_t=%s",
templateWindowSize, searchWindowSize, ocl::typeToStr(type),
ocl::typeToStr(CV_32SC(cn)), BLOCK_COLS, BLOCK_ROWS, CTA_SIZE,
templateWindowHalfWize, searchWindowHalfSize,
ocl::convertTypeStr(CV_8U, CV_32S, cn, cvt[0]), cn,
CTA_SIZE >> 1, ocl::convertTypeStr(CV_32S, CV_8U, cn, cvt[1]));
ocl::Kernel k("fastNlMeansDenoising", ocl::photo::nlmeans_oclsrc, opts);
if (k.empty())
return false;
UMat almostDist2Weight;
if (!ocl_calcAlmostDist2Weight<float>(almostDist2Weight, searchWindowSize, templateWindowSize, h, cn,
almostTemplateWindowSizeSqBinShift))
return false;
CV_Assert(almostTemplateWindowSizeSqBinShift >= 0);
UMat srcex;
int borderSize = searchWindowHalfSize + templateWindowHalfWize;
copyMakeBorder(_src, srcex, borderSize, borderSize, borderSize, borderSize, BORDER_DEFAULT);
_dst.create(size, type);
UMat dst = _dst.getUMat();
int searchWindowSizeSq = searchWindowSize * searchWindowSize;
Size upColSumSize(size.width, searchWindowSizeSq * nblocksy);
Size colSumSize(nblocksx * templateWindowSize, searchWindowSizeSq * nblocksy);
UMat buffer(upColSumSize + colSumSize, CV_32SC(cn));
srcex = srcex(Rect(Point(borderSize, borderSize), size));
k.args(ocl::KernelArg::ReadOnlyNoSize(srcex), ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(almostDist2Weight),
ocl::KernelArg::PtrReadOnly(buffer), almostTemplateWindowSizeSqBinShift);
size_t globalsize[2] = { nblocksx * CTA_SIZE, nblocksy }, localsize[2] = { CTA_SIZE, 1 };
return k.run(2, globalsize, localsize, false);
}
示例12: imshow
void cv::imshow( const String& winname, InputArray _img )
{
CV_TRACE_FUNCTION();
const Size size = _img.size();
#ifndef HAVE_OPENGL
CV_Assert(size.width>0 && size.height>0);
{
Mat img = _img.getMat();
CvMat c_img = cvMat(img);
cvShowImage(winname.c_str(), &c_img);
}
#else
const double useGl = getWindowProperty(winname, WND_PROP_OPENGL);
CV_Assert(size.width>0 && size.height>0);
if (useGl <= 0)
{
Mat img = _img.getMat();
CvMat c_img = cvMat(img);
cvShowImage(winname.c_str(), &c_img);
}
else
{
const double autoSize = getWindowProperty(winname, WND_PROP_AUTOSIZE);
if (autoSize > 0)
{
resizeWindow(winname, size.width, size.height);
}
setOpenGlContext(winname);
cv::ogl::Texture2D& tex = ownWndTexs[winname];
if (_img.kind() == _InputArray::CUDA_GPU_MAT)
{
cv::ogl::Buffer& buf = ownWndBufs[winname];
buf.copyFrom(_img);
buf.setAutoRelease(false);
tex.copyFrom(buf);
tex.setAutoRelease(false);
}
else
{
tex.copyFrom(_img);
}
tex.setAutoRelease(false);
setOpenGlDrawCallback(winname, glDrawTextureCallback, &tex);
updateWindow(winname);
}
#endif
}
示例13: Sobel
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
int dtype = CV_MAKE_TYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
return;
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
#ifdef HAVE_IPP
CV_IPP_CHECK()
{
if (ksize < 0)
{
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
}
else if (0 < ksize)
{
if (IPPDerivSobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
}
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
示例14: warp
Point CylindricalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst)
{
UMat uxmap, uymap;
Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
remap(src, dst, uxmap, uymap, interp_mode, border_mode);
return dst_roi.tl();
}
示例15: ocl_integral
static bool ocl_integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, int sdepth, int sqdepth )
{
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( _src.type() != CV_8UC1 || _src.step() % vlen != 0 || _src.offset() % vlen != 0 ||
(!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) )
return false;
char cvt[40];
String opts = format("-D sdepth=%d -D sqdepth=%d -D TYPE=%s -D TYPE4=%s4 -D convert_TYPE4=%s%s",
sdepth, sqdepth, ocl::typeToStr(sqdepth), ocl::typeToStr(sqdepth),
ocl::convertTypeStr(sdepth, sqdepth, 4, cvt),
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel k1("integral_cols", ocl::imgproc::integral_sqrsum_oclsrc, opts);
if (k1.empty())
return false;
Size size = _src.size(), dsize = Size(size.width + 1, size.height + 1),
t_size = Size(((size.height + vlen - 1) / vlen) * vlen, size.width);
UMat src = _src.getUMat(), t_sum(t_size, sdepth), t_sqsum(t_size, sqdepth);
t_sum = t_sum(Range::all(), Range(0, size.height));
t_sqsum = t_sqsum(Range::all(), Range(0, size.height));
_sum.create(dsize, sdepth);
_sqsum.create(dsize, sqdepth);
UMat sum = _sum.getUMat(), sqsum = _sqsum.getUMat();
int offset = src.offset / vlen;
int pre_invalid = src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
int sum_offset = sum.offset / sum.elemSize();
int sqsum_offset = sqsum.offset / sqsum.elemSize();
CV_Assert(sqsum.offset % sqsum.elemSize() == 0);
k1.args(ocl::KernelArg::PtrReadOnly(src), ocl::KernelArg::PtrWriteOnly(t_sum),
ocl::KernelArg::PtrWriteOnly(t_sqsum), offset, pre_invalid, src.rows,
src.cols, (int)src.step, (int)t_sum.step, (int)t_sqsum.step);
size_t gt = ((vcols + 1) / 2) * 256, lt = 256;
if (!k1.run(1, >, <, false))
return false;
ocl::Kernel k2("integral_rows", ocl::imgproc::integral_sqrsum_oclsrc, opts);
if (k2.empty())
return false;
k2.args(ocl::KernelArg::PtrReadOnly(t_sum), ocl::KernelArg::PtrReadOnly(t_sqsum),
ocl::KernelArg::PtrWriteOnly(sum), ocl::KernelArg::PtrWriteOnly(sqsum),
t_sum.rows, t_sum.cols, (int)t_sum.step, (int)t_sqsum.step,
(int)sum.step, (int)sqsum.step, sum_offset, sqsum_offset);
size_t gt2 = t_sum.cols * 32, lt2 = 256;
return k2.run(1, >2, <2, false);
}