当前位置: 首页>>代码示例>>C++>>正文


C++ InputArray::empty方法代码示例

本文整理汇总了C++中InputArray::empty方法的典型用法代码示例。如果您正苦于以下问题:C++ InputArray::empty方法的具体用法?C++ InputArray::empty怎么用?C++ InputArray::empty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在InputArray的用法示例。


在下文中一共展示了InputArray::empty方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeSaliency

bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap )
{
  if( image.empty() )
    return false;

  return computeSaliencyImpl( image, saliencyMap );
}
开发者ID:cjnolet,项目名称:opencv_contrib,代码行数:7,代码来源:saliency.cpp

示例2: cacheGValues

void DepthmapDenoiseWeightedHuberImpl::cacheGValues(InputArray _visibleLightImage){
    using namespace cv::cuda::device::dtam_denoise;
    localStream = cv::cuda::StreamAccessor::getStream(cvStream);
    if (!_visibleLightImage.empty()){
        visibleLightImage=_visibleLightImage.getGpuMat();
        cachedG=0;
    }
    if(cachedG)
        return;//already cached
    if(!alloced)
        allocate(rows,cols);

    
    // Call the gpu function for caching g's
    
    loadConstants(rows, cols, 0, 0, 0, 0, 0, 0,
            0, 0);
    CV_Assert(_g1.isContinuous());
    float* pp = (float*) visibleLightImage.data;//TODO: write a color version.
    float* g1p = (float*)_g1.data;
    float* gxp = (float*)_gx.data;
    float* gyp = (float*)_gy.data;
    computeGCaller(pp,  g1p,  gxp,  gyp, cols);
    cachedG=1;
}
开发者ID:Ashwinning,项目名称:OpenDTAM,代码行数:25,代码来源:DepthmapDenoiseWeightedHuber.cpp

示例3: detectImpl

    void AKAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
    {
        cv::Mat img = image.getMat();
        if (img.type() != CV_8UC1)
            cvtColor(image, img, COLOR_BGR2GRAY);

        Mat img1_32;
        img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);

        AKAZEOptions options;
        options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
        options.descriptor_channels = descriptor_channels;
        options.descriptor_size = descriptor_size;
        options.nsublevels = nsublevels;
        options.dthreshold = dtreshhold;
        options.img_width = img.cols;
        options.img_height = img.rows;

        AKAZEFeatures impl(options);
        impl.Create_Nonlinear_Scale_Space(img1_32);
        impl.Feature_Detection(keypoints);

        if (!mask.empty())
        {
            cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
        }
    }
开发者ID:imnosov,项目名称:opencv,代码行数:27,代码来源:akaze.cpp

示例4: Niblack

/*!
Niblack binarization algorithm.

@param src [in] Mat, single channel uchar image.
@param dst [out] Mat, result image.
@param windowSize [in] int, window size for calculation.
@param k [in] int, parameter for local threshold.
@return int, 0x0000 = Success.
*/
int Niblack(InputArray src, OutputArray dst, int windowSize, float k)
{
	if (src.type() != CV_8UC1 || src.empty())	
		return 0x0001;	/*!< source image type not supported. */

	/*! update window size, which should be odd. */
	if (windowSize < 2)	
		return 0x0002;	/*!< window size not supported. */
	if (windowSize / 2 == 0)
		windowSize++;

	Mat source, destination;
	Mat sourceUchar = src.getMat();
	sourceUchar.convertTo(source, CV_32FC1);

	/*! calcalte mean and variance via
	D(x) = E(x^2) - (Ex)^2 */
	Mat avg, power, avg_power, power_avg;
	Mat standard;
	boxFilter(source, avg, -1, Size(windowSize, windowSize));
	pow(avg, 2, avg_power);
	pow(source, 2, power);
	boxFilter(power, power_avg, -1, Size(windowSize, windowSize));
	sqrt(power_avg - power_avg, standard);

	/*! calculate local threshold */
	Mat threshold = avg + k * standard;

	/*! Output result */
	dst.create(sourceUchar.size(), CV_8UC1);
	destination = dst.getMat();
	destination = source > threshold;

	return 0x0000;
}
开发者ID:sumspr,项目名称:imgpocket,代码行数:44,代码来源:Niblack.cpp

示例5: trainE

bool EM::trainE(InputArray samples,
                InputArray _means0,
                InputArray _covs0,
                InputArray _weights0,
                OutputArray logLikelihoods,
                OutputArray labels,
                OutputArray probs)
{
    Mat samplesMat = samples.getMat();
    vector<Mat> covs0;
    _covs0.getMatVector(covs0);
    
    Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();

    setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
                 !_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0);
    return doTrain(START_E_STEP, logLikelihoods, labels, probs);
}
开发者ID:BRAINSia,项目名称:OpenCV_TruncatedSVN,代码行数:18,代码来源:em.cpp

示例6: create

bool CustomPattern::create(InputArray pattern, const Size2f boardSize, OutputArray output)
{
    CV_Assert(!pattern.empty() && (boardSize.area() > 0));

    Mat img = pattern.getMat();
    float pixel_size = (boardSize.width > boardSize.height)?    // Choose the longer side for more accurate calculation
                         float(img.cols) / boardSize.width:     // width is longer
                         float(img.rows) / boardSize.height;    // height is longer
    return init(img, pixel_size, output);
}
开发者ID:23pointsNorth,项目名称:customCalibPattern,代码行数:10,代码来源:custom_pattern.cpp

示例7: detectAndCompute

        void detectAndCompute(InputArray image, InputArray mask,
                              std::vector<KeyPoint>& keypoints,
                              OutputArray descriptors,
                              bool useProvidedKeypoints)
        {
            Mat img = image.getMat();

            if (img_width != img.cols) {
                img_width = img.cols;
                impl.release();
            }

            if (img_height != img.rows) {
                img_height = img.rows;
                impl.release();
            }

            if (impl.empty()) {
                AKAZEOptionsV2 options;
                options.descriptor = descriptor;
                options.descriptor_channels = descriptor_channels;
                options.descriptor_size = descriptor_size;
                options.img_width = img_width;
                options.img_height = img_height;
                options.dthreshold = threshold;
                options.omax = octaves;
                options.nsublevels = sublevels;
                options.diffusivity = diffusivity;

                impl = makePtr<AKAZEFeaturesV2>(options);
            }

            impl->Create_Nonlinear_Scale_Space(img);

            if (!useProvidedKeypoints)
            {
                impl->Feature_Detection(keypoints);
            }

            if (!mask.empty())
            {
                KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
            }

            if( descriptors.needed() )
            {
                Mat& desc = descriptors.getMatRef();
                impl->Compute_Descriptors(keypoints, desc);

                CV_Assert((!desc.rows || desc.cols == descriptorSize()));
                CV_Assert((!desc.rows || (desc.type() == descriptorType())));
            }
        }
开发者ID:h2suzuki,项目名称:fast_akaze,代码行数:53,代码来源:akaze.cpp

示例8: trainM

bool EM::trainM(InputArray samples,
                InputArray _probs0,
                OutputArray logLikelihoods,
                OutputArray labels,
                OutputArray probs)
{
    Mat samplesMat = samples.getMat();
    Mat probs0 = _probs0.getMat();
    
    setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
    return doTrain(START_M_STEP, logLikelihoods, labels, probs);
}
开发者ID:BRAINSia,项目名称:OpenCV_TruncatedSVN,代码行数:12,代码来源:em.cpp

示例9: detectAndCompute

        void detectAndCompute(InputArray image, InputArray mask,
                              std::vector<KeyPoint>& keypoints,
                              OutputArray descriptors,
                              bool useProvidedKeypoints)
        {
            Mat img = image.getMat();
            if (img.type() != CV_8UC1 && img.type() != CV_16UC1)
                cvtColor(image, img, COLOR_BGR2GRAY);

            Mat img1_32;
            if ( img.depth() == CV_32F )
                img1_32 = img;
            else if ( img.depth() == CV_8U )
                img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
            else if ( img.depth() == CV_16U )
                img.convertTo(img1_32, CV_32F, 1.0 / 65535.0, 0);

            CV_Assert( ! img1_32.empty() );

            AKAZEOptions options;
            options.descriptor = descriptor;
            options.descriptor_channels = descriptor_channels;
            options.descriptor_size = descriptor_size;
            options.img_width = img.cols;
            options.img_height = img.rows;
            options.dthreshold = threshold;
            options.omax = octaves;
            options.nsublevels = sublevels;
            options.diffusivity = diffusivity;

            AKAZEFeatures impl(options);
            impl.Create_Nonlinear_Scale_Space(img1_32);

            if (!useProvidedKeypoints)
            {
                impl.Feature_Detection(keypoints);
            }

            if (!mask.empty())
            {
                KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
            }

            if( descriptors.needed() )
            {
                Mat& desc = descriptors.getMatRef();
                impl.Compute_Descriptors(keypoints, desc);

                CV_Assert((!desc.rows || desc.cols == descriptorSize()));
                CV_Assert((!desc.rows || (desc.type() == descriptorType())));
            }
        }
开发者ID:fpierfed,项目名称:opencv,代码行数:52,代码来源:akaze.cpp

示例10: compute

void DescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{
    if( image.empty() || keypoints.empty() )
    {
        descriptors.release();
        return;
    }

    KeyPointsFilter::runByImageBorder( keypoints, image.size(), 0 );
    KeyPointsFilter::runByKeypointSize( keypoints, std::numeric_limits<float>::epsilon() );

    computeImpl( image, keypoints, descriptors );
}
开发者ID:112000,项目名称:opencv,代码行数:13,代码来源:descriptors.cpp

示例11: detectAndCompute

/*
 * Compute the descriptors for a set of keypoints in an image.
 * image        The image.
 * keypoints    The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
 * descriptors  Copmputed descriptors. Row i is the descriptor for keypoint i.
 */
void Feature2D::compute( InputArray image,
                         std::vector<KeyPoint>& keypoints,
                         OutputArray descriptors )
{
    CV_INSTRUMENT_REGION();

    if( image.empty() )
    {
        descriptors.release();
        return;
    }
    detectAndCompute(image, noArray(), keypoints, descriptors, true);
}
开发者ID:AliMiraftab,项目名称:opencv,代码行数:19,代码来源:feature2d.cpp

示例12: integral

void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, cv::gpu::Stream& s) const
{
    CV_Assert(fields);

    // only color images and precomputed integrals are supported
    int type = _image.type();
    CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty()));

    const cv::gpu::GpuMat image = _image.getGpuMat();

    if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1);

    cv::gpu::GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();

    /// roi
    Fields& flds = *fields;
    int shr = flds.shrinkage;

    flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());

    device::shrink(rois, flds.mask);
    //cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);

    if (type == CV_8UC3)
    {
        flds.update(image.rows, image.cols, flds.shrinkage);

        if (flds.check((float)minScale, (float)maxScale, scales))
            flds.createLevels(image.rows, image.cols);

        flds.preprocessor->apply(image, flds.shrunk);
        integral(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
    }
    else
    {
        if (s)
            s.enqueueCopy(image, flds.hogluv);
        else
            image.copyTo(flds.hogluv);
    }

    flds.detect(objects, s);

    if ( (flags && NMS_MASK) != NO_REJECT)
    {
        cv::gpu::GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
        flds.suppress(objects, s);
        flds.suppressed.copyTo(spr);
    }
}
开发者ID:dhruvbehl,项目名称:opencv,代码行数:50,代码来源:detector_cuda.cpp

示例13: ocl_accumulate

static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray _dst, double alpha,
                            InputArray _mask, int op_type )
{
    CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE ||
              op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED);

    int stype = _src.type(), cn = CV_MAT_CN(stype);
    int sdepth = CV_MAT_DEPTH(stype), ddepth = _dst.depth();

    bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
            haveMask = !_mask.empty();

    if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
        return false;

    const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT",
                                   "ACCUMULATE_WEIGHTED" };

    ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc,
                  format("-D %s%s -D srcT=%s -D cn=%d -D dstT=%s%s",
                         opMap[op_type], haveMask ? " -D HAVE_MASK" : "",
                         ocl::typeToStr(sdepth), cn, ocl::typeToStr(ddepth),
                         doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
    if (k.empty())
        return false;

    UMat src = _src.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(), mask = _mask.getUMat();

    ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
            src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
            dstarg = ocl::KernelArg::ReadWrite(dst),
            maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);

    int argidx = k.set(0, srcarg);
    if (op_type == ACCUMULATE_PRODUCT)
        argidx = k.set(argidx, src2arg);
    argidx = k.set(argidx, dstarg);
    if (op_type == ACCUMULATE_WEIGHTED)
    {
        if (ddepth == CV_32F)
            argidx = k.set(argidx, (float)alpha);
        else
            argidx = k.set(argidx, alpha);
    }
    if (haveMask)
        k.set(argidx, maskarg);

    size_t globalsize[2] = { src.cols, src.rows };
    return k.run(2, globalsize, NULL, false);
}
开发者ID:stalinizer,项目名称:opencv,代码行数:50,代码来源:accum.cpp

示例14: run

void ICP::run(bool withCuda, InputArray initObjSet)
{
	assert(!m_objSet.empty() && !m_modSet.empty());

	double d_pre = 100000, d_now = 100000;
	int iterCnt = 0;
	Mat objSet;
	Transformation tr;

	if (initObjSet.empty())
	{
		objSet = m_objSet.clone();
	}
	else
	{
		objSet = initObjSet.getMat();
	}

/*	plotTwoPoint3DSet(objSet, m_modSet);*/

	do 
	{
		d_pre = d_now;

		Mat closestSet;
		Mat lambda(objSet.rows, 1, CV_64FC1);
		RUNANDTIME(global_timer, closestSet = 
			getClosestPointsSet(objSet, lambda, KDTREE).clone(), 
			OUTPUT && SUBOUTPUT, "compute closest points.");
		Mat tmpObjSet = convertMat(m_objSet);
		Mat tmpModSet = convertMat(closestSet);
		RUNANDTIME(global_timer, tr = 
			computeTransformation(tmpObjSet, tmpModSet, lambda), 
			OUTPUT && SUBOUTPUT, "compute transformation");
		Mat transformMat = tr.toMatrix();
		RUNANDTIME(global_timer, transformPointCloud(
			m_objSet, objSet, transformMat, withCuda), 
			OUTPUT && SUBOUTPUT, "transform points.");
		RUNANDTIME(global_timer, 
			d_now = computeError(objSet, closestSet, lambda, withCuda),
			OUTPUT && SUBOUTPUT, "compute error.");

		iterCnt++;
	} while (fabs(d_pre - d_now) > m_epsilon && iterCnt <= m_iterMax);

	m_tr = tr;
/*	waitKey();*/

/*	plotTwoPoint3DSet(objSet, m_modSet);*/
}
开发者ID:hayborl,项目名称:ctok,代码行数:50,代码来源:icp.cpp

示例15: homographyFromSquarePoints

void IPPE::PoseSolver::solveSquare(float squareLength, InputArray _imagePoints, InputArray _cameraMatrix, InputArray _distCoeffs,
                                   OutputArray _rvec1, OutputArray _tvec1, float& err1, OutputArray _rvec2, OutputArray _tvec2, float& err2)
{

    //allocate outputs:
    _rvec1.create(3, 1, CV_64FC1);
    _tvec1.create(3, 1, CV_64FC1);
    _rvec2.create(3, 1, CV_64FC1);
    _tvec2.create(3, 1, CV_64FC1);

    cv::Mat normalizedInputPoints; //undistored version of imagePoints
    cv::Mat objectPoints2D;

    //generate the object points:
    generateSquareObjectCorners2D(squareLength, objectPoints2D);


    cv::Mat H; //homography from canonical object points to normalized pixels


    if (_cameraMatrix.empty()) {
        //this means imagePoints are defined in normalized pixel coordinates, so just copy it:
        _imagePoints.copyTo(normalizedInputPoints);
    }
    else {
        //undistort the image points (i.e. put them in normalized pixel coordinates).
        cv::undistortPoints(_imagePoints, normalizedInputPoints, _cameraMatrix, _distCoeffs);
    }

    //compute H
    homographyFromSquarePoints(normalizedInputPoints, squareLength / 2.0f, H);

    //now solve
    cv::Mat Ma, Mb;
    solveCanonicalForm(objectPoints2D, normalizedInputPoints, H, Ma, Mb);

    //sort poses according to reprojection error:
    cv::Mat M1, M2;
    cv::Mat objectPoints3D;
    generateSquareObjectCorners3D(squareLength, objectPoints3D);
    sortPosesByReprojError(objectPoints3D, _imagePoints, _cameraMatrix, _distCoeffs, Ma, Mb, M1, M2, err1, err2);

    //fill outputs
    rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1);
    rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2);

    M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1);
    M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2);
}
开发者ID:lz89,项目名称:IPPE,代码行数:49,代码来源:ippe.cpp


注:本文中的InputArray::empty方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。