当前位置: 首页>>代码示例>>C++>>正文


C++ Global::getMinimumRecognitionWeight方法代码示例

本文整理汇总了C++中Global::getMinimumRecognitionWeight方法的典型用法代码示例。如果您正苦于以下问题:C++ Global::getMinimumRecognitionWeight方法的具体用法?C++ Global::getMinimumRecognitionWeight怎么用?C++ Global::getMinimumRecognitionWeight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Global的用法示例。


在下文中一共展示了Global::getMinimumRecognitionWeight方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: QWidget

SearchPreferences::SearchPreferences(QWidget *parent) :
    QWidget(parent)
{
    QGridLayout *mainLayout = new QGridLayout(this);
    setLayout(mainLayout);

    syncAttachments = new QCheckBox(tr("Index Attachments"));
    mainLayout->addWidget(syncAttachments,0,0);
    syncAttachments->setChecked(global.synchronizeAttachments());

    weight = new QSpinBox(this);
    mainLayout->addWidget(new QLabel(tr("Minimum Image Recognition Weight")), 1,0);
    mainLayout->addWidget(weight,1,1);
    weight->setMinimum(1);
    weight->setMaximum(100);
    weight->setValue(global.getMinimumRecognitionWeight());
    this->setFont(global.getGuiFont(font()));

}
开发者ID:BigOz,项目名称:Nixnote2,代码行数:19,代码来源:searchpreferences.cpp

示例2: addImageHighlight

/* This function works the same as the addHighlight, but instead of highlighting
  text in a note, it highlights the text in an image. */
QString NoteFormatter::addImageHighlight(qint32 resLid, QString imgfile) {
    if (highlightWords.size() == 0)
        return "";

    // Get the image resource recognition data.  This tells where to highlight the image
    ResourceTable resTable(global.db);
    Resource recoResource;
    resTable.getResourceRecognition(recoResource, resLid);
    Data recognition;
    if (recoResource.recognition.isSet())
        recognition = recoResource.recognition;
    if (!recognition.size.isSet() || !recognition.body.isSet() ||
            recognition.size == 0) {
        return "";
    }

    QString filename = global.fileManager.getTmpDirPath() + QString::number(resLid) + ".png";
    // Now we have the recognition data.  We need to go through it
    QByteArray recoData;
    if (recognition.body.isSet())
        recoData = recognition.body;
    QString xml(recoData);

    // Create a transparent pixmap.  The only non transparent piece is teh
    // highlight that will be overlaid on the old image
    imgfile = imgfile.replace("file:///", "");
    QPixmap originalFile(imgfile);
    QPixmap overlayPix(originalFile.size());
    overlayPix.fill(Qt::transparent);
    QPainter p2(&overlayPix);
    p2.setBackgroundMode(Qt::TransparentMode);
    p2.setRenderHint(QPainter::Antialiasing,true);
    QColor yellow(Qt::yellow);
    p2.setBrush(yellow);

    // Now, we have the image.  We need to go through all the recognition data to highlight
    // what we've found.
    QDomDocument doc;
    doc.setContent(xml);

    // Go through the "item" nodes
    QDomNodeList anchors = doc.elementsByTagName("item");
    for (unsigned int i=0; i<anchors.length(); i++) {
        QDomElement element = anchors.at(i).toElement();
        int x = element.attribute("x").toInt();
        int y = element.attribute("y").toInt();
        int w = element.attribute("w").toInt();
        int h = element.attribute("h").toInt();

        // Get all children ("t" nodes)
        QDomNodeList children = element.childNodes();
        for (unsigned int j=0; j<children.length(); j++) {
            QDomElement child = children.at(j).toElement();
            if (child.nodeName().toLower() == "t") {
                QString text = child.text();
                int weight = child.attribute("w").toInt(); // Image weight
                if (weight >= global.getMinimumRecognitionWeight()) {

                    // Check to see if this word matches something we're looking for
                    for (int k=0; k<highlightWords.size(); k++) {
                        QString searchWord = highlightWords[k].toLower();
                        if (searchWord.endsWith("*"))
                            searchWord.chop(1);
                        if (text.toLower().contains(searchWord)) {
                            p2.drawRect(x,y,w,h);
                        }
                    }
                }
            }
        }
    }

    // Paint the highlight onto the background & save over the original
    p2.setOpacity(0.4);
    p2.drawPixmap(0,0,overlayPix);
    p2.end();

    // Create the actual overlay.  We do this in two steps to avoid
    // constantly painting the same area
    QPixmap finalPix(originalFile.size());
    finalPix.fill(Qt::transparent);
    QPainter p3(&finalPix);
    p3.setBackgroundMode(Qt::TransparentMode);
    p3.setRenderHint(QPainter::Antialiasing,true);
    p3.drawPixmap(0,0,originalFile);
    p3.setOpacity(0.4);
    p3.drawPixmap(0,0,overlayPix);
    p3.end();
    finalPix.save(filename);

    return "this.src='file://"+filename+"';";
}
开发者ID:Hexcles,项目名称:Nixnote2,代码行数:94,代码来源:noteformatter.cpp


注:本文中的Global::getMinimumRecognitionWeight方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。