本文整理汇总了C++中GMatrix::newRows方法的典型用法代码示例。如果您正苦于以下问题:C++ GMatrix::newRows方法的具体用法?C++ GMatrix::newRows怎么用?C++ GMatrix::newRows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GMatrix
的用法示例。
在下文中一共展示了GMatrix::newRows方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: transition
void transition(GArgReader& args)
{
// Load the input data
GMatrix* pActions = loadData(args.pop_string());
Holder<GMatrix> hActions(pActions);
GMatrix* pState = loadData(args.pop_string());
Holder<GMatrix> hState(pState);
if(pState->rows() != pActions->rows())
ThrowError("Expected the same number of rows in both datasets");
// Parse options
bool delta = false;
while(args.size() > 0)
{
if(args.if_pop("-delta"))
delta = true;
else
ThrowError("Invalid option: ", args.peek());
}
// Make the output data
size_t actionDims = pActions->cols();
size_t stateDims = pState->cols();
GMixedRelation* pRelation = new GMixedRelation();
sp_relation pRel = pRelation;
pRelation->addAttrs(pActions->relation().get());
pRelation->addAttrs(stateDims + stateDims, 0);
GMatrix* pTransition = new GMatrix(pRel);
pTransition->newRows(pActions->rows() - 1);
for(size_t i = 0; i < pActions->rows() - 1; i++)
{
double* pOut = pTransition->row(i);
GVec::copy(pOut, pActions->row(i), actionDims);
GVec::copy(pOut + actionDims, pState->row(i), stateDims);
GVec::copy(pOut + actionDims + stateDims, pState->row(i + 1), stateDims);
if(delta)
GVec::subtract(pOut + actionDims + stateDims, pState->row(i), stateDims);
}
pTransition->print(cout);
}
示例2: transduceInner
// virtual
GMatrix* GAgglomerativeTransducer::transduceInner(const GMatrix& features1, const GMatrix& labels1, const GMatrix& features2)
{
// Init the metric
if(!m_pMetric)
setMetric(new GRowDistance(), true);
m_pMetric->init(&features1.relation(), false);
// Make a dataset with all featuers
GMatrix featuresAll(features1.relation().clone());
featuresAll.reserve(features1.rows() + features2.rows());
GReleaseDataHolder hFeaturesAll(&featuresAll);
for(size_t i = 0; i < features1.rows(); i++)
featuresAll.takeRow((double*)features1[i]);
for(size_t i = 0; i < features2.rows(); i++)
featuresAll.takeRow((double*)features2[i]);
// Find enough neighbors to form a connected graph
GNeighborGraph* pNF = NULL;
size_t neighbors = 6;
while(true)
{
GKdTree* pKdTree = new GKdTree(&featuresAll, neighbors, m_pMetric, false);
pNF = new GNeighborGraph(pKdTree, true);
pNF->fillCache();
if(pNF->isConnected())
break;
if(neighbors + 1 >= featuresAll.rows())
{
delete(pNF);
throw Ex("internal problem--a graph with so many neighbors must be connected");
}
neighbors = std::min((neighbors * 3) / 2, featuresAll.rows() - 1);
}
// Sort all the neighbors by their distances
size_t count = featuresAll.rows() * neighbors;
vector< std::pair<double,size_t> > distNeighs;
distNeighs.resize(count);
double* pDistances = pNF->squaredDistanceTable();
size_t* pRows = pNF->cache();
size_t index = 0;
vector< std::pair<double,size_t> >::iterator it = distNeighs.begin();
for(size_t i = 0; i < count; i++)
{
if(*pRows < featuresAll.rows())
{
it->first = *pDistances;
it->second = i;
it++;
}
else
index--;
pRows++;
pDistances++;
}
std::sort(distNeighs.begin(), it);
// Transduce
GMatrix* pOut = new GMatrix(labels1.relation().clone());
Holder<GMatrix> hOut(pOut);
pOut->newRows(features2.rows());
pOut->setAll(-1);
size_t* pSiblings = new size_t[featuresAll.rows()]; // a cyclical linked list of each row in the cluster
ArrayHolder<size_t> hSiblings(pSiblings);
for(size_t lab = 0; lab < labels1.cols(); lab++)
{
// Assign each row to its own cluster
GIndexVec::makeIndexVec(pSiblings, featuresAll.rows()); // init such that each row is in a cluster of 1
size_t missingLabels = features2.rows();
// Merge until we have the desired number of clusters
pRows = pNF->cache();
for(vector< std::pair<double,size_t> >::iterator dn = distNeighs.begin(); dn != it; dn++)
{
// Get the next two closest points
size_t a = dn->second / neighbors;
size_t b = pRows[dn->second];
GAssert(a != b && a < featuresAll.rows() && b < featuresAll.rows());
int labelA = (a < features1.rows() ? (int)labels1[a][lab] : (int)pOut->row(a - features1.rows())[lab]);
int labelB = (b < features1.rows() ? (int)labels1[b][lab] : (int)pOut->row(b - features1.rows())[lab]);
// Merge the clusters
if(labelA >= 0 && labelB >= 0)
continue; // Both points are already labeled, so there is no point in merging their clusters
if(labelA < 0 && labelB >= 0) // Make sure that if one of them has a valid label, it is point a
{
std::swap(a, b);
std::swap(labelA, labelB);
}
if(labelA >= 0)
{
for(size_t i = pSiblings[b]; true; i = pSiblings[i]) // Label every row in cluster b
{
GAssert(i >= features1.rows());
GAssert(pOut->row(i - features1.rows())[lab] == (double)-1);
pOut->row(i - features1.rows())[lab] = labelA;
missingLabels--;
if(i == b)
break;
//.........这里部分代码省略.........