当前位置: 首页>>代码示例>>C++>>正文


C++ GMatrix::cloneSub方法代码示例

本文整理汇总了C++中GMatrix::cloneSub方法的典型用法代码示例。如果您正苦于以下问题:C++ GMatrix::cloneSub方法的具体用法?C++ GMatrix::cloneSub怎么用?C++ GMatrix::cloneSub使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GMatrix的用法示例。


在下文中一共展示了GMatrix::cloneSub方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: GNaiveBayes_testMath

void GNaiveBayes_testMath()
{
	const char* trainFile =
	"@RELATION test\n"
	"@ATTRIBUTE a {t,f}\n"
	"@ATTRIBUTE b {r,g,b}\n"
	"@ATTRIBUTE c {y,n}\n"
	"@DATA\n"
	"t,r,y\n"
	"f,r,n\n"
	"t,g,y\n"
	"f,g,y\n"
	"f,g,n\n"
	"t,r,n\n"
	"t,r,y\n"
	"t,b,y\n"
	"f,r,y\n"
	"f,g,n\n"
	"f,b,y\n"
	"t,r,n\n";
	GMatrix train;
	train.parseArff(trainFile, strlen(trainFile));
	GMatrix* pFeatures = train.cloneSub(0, 0, train.rows(), 2);
	std::unique_ptr<GMatrix> hFeatures(pFeatures);
	GMatrix* pLabels = train.cloneSub(0, 2, train.rows(), 1);
	std::unique_ptr<GMatrix> hLabels(pLabels);
	GNaiveBayes nb;
	nb.setEquivalentSampleSize(0.0);
	nb.train(*pFeatures, *pLabels);
	GPrediction out;
	GVec pat(2);
	pat[0] = 0; pat[1] = 0;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 4.0/7.0*3.0/7.0, 5.0/12.0, 2.0/5.0*3.0/5.0, &out);
	pat[0] = 0; pat[1] = 1;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 4.0/7.0*2.0/7.0, 5.0/12.0, 2.0/5.0*2.0/5.0, &out);
	pat[0] = 0; pat[1] = 2;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 4.0/7.0*2.0/7.0, 5.0/12.0, 2.0/5.0*0.0/5.0, &out);
	pat[0] = 1; pat[1] = 0;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 3.0/7.0*3.0/7.0, 5.0/12.0, 3.0/5.0*3.0/5.0, &out);
	pat[0] = 1; pat[1] = 1;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 3.0/7.0*2.0/7.0, 5.0/12.0, 3.0/5.0*2.0/5.0, &out);
	pat[0] = 1; pat[1] = 2;
	nb.predictDistribution(pat, &out);
	GNaiveBayes_CheckResults(7.0/12.0, 3.0/7.0*2.0/7.0, 5.0/12.0, 3.0/5.0*0.0/5.0, &out);
}
开发者ID:BaskWind,项目名称:waffles,代码行数:50,代码来源:GNaiveBayes.cpp

示例2: LoadData

void LoadData(GArgReader &args, std::unique_ptr<GMatrix> &hOutput)
{
	// Load the dataset by extension
	if(args.size() < 1)
		throw Ex("Expected the filename of a datset. (Found end of arguments.)");
	const char* szFilename = args.pop_string();
	PathData pd;
	GFile::parsePath(szFilename, &pd);
	GMatrix data;
	vector<size_t> abortedCols;
	vector<size_t> ambiguousCols;
	const char *input_type;
	if (args.next_is_flag() && args.if_pop("-input_type")) {
		input_type = args.pop_string();
	} else { /* deduce it from extension (if any) */
		input_type = szFilename + pd.extStart;
		if (*input_type != '.') /* no extension - assume ARFF */
			input_type = "arff";
		else
			input_type++;
	}
	
	// Now load the data
	if(_stricmp(input_type, "arff") == 0)
	{
		data.loadArff(szFilename);
	}
	else if(_stricmp(input_type, "csv") == 0)
	{
		GCSVParser parser;
		parser.parse(data, szFilename);
		cerr << "\nParsing Report:\n";
		for(size_t i = 0; i < data.cols(); i++)
			cerr << to_str(i) << ") " << parser.report(i) << "\n";
	}
	else if(_stricmp(input_type, "dat") == 0)
	{
		GCSVParser parser;
		parser.setSeparator('\0');
		parser.parse(data, szFilename);
		cerr << "\nParsing Report:\n";
		for(size_t i = 0; i < data.cols(); i++)
			cerr << to_str(i) << ") " << parser.report(i) << "\n";
	}
	else
	{
		throw Ex("Unsupported file format: ", szFilename + pd.extStart);
	}
	
	// Split data into a feature matrix and a label matrix
	GMatrix* pFeatures = data.cloneSub(0, 0, data.rows(), data.cols());
	hOutput.reset(pFeatures);
}
开发者ID:BaskWind,项目名称:waffles,代码行数:53,代码来源:main.cpp

示例3: Train

void Train(GArgReader &args)
{
	// Load series from file
	std::unique_ptr<GMatrix> hSeries, hFeatures;
	LoadData(args, hSeries);
	GMatrix *pSeries = hSeries.get();
	
	// Split features/labels
	if(pSeries->cols() == 2)
	{
		GMatrix *pFeatures = pSeries->cloneSub(0, 0, pSeries->rows(), 1);
		GMatrix *pLabels = pSeries->cloneSub(0, 1, pSeries->rows(), 1);
		hFeatures.reset(pFeatures);
		hSeries.reset(pLabels);
		pSeries = pLabels;
	}
	else if(pSeries->cols() > 2)
	{
		throw Ex("Too many columns!");
	}
	
	// Parse options
	GNeuralDecomposition *nd = new GNeuralDecomposition();
	while(args.next_is_flag())
	{
		if(args.if_pop("-regularization"))
			nd->setRegularization(args.pop_double());
		else if(args.if_pop("-learningRate"))
			nd->setLearningRate(args.pop_double());
		else if(args.if_pop("-linearUnits"))
			nd->setLinearUnits(args.pop_uint());
		else if(args.if_pop("-softplusUnits"))
			nd->setSoftplusUnits(args.pop_uint());
		else if(args.if_pop("-sigmoidUnits"))
			nd->setSigmoidUnits(args.pop_uint());
		else if(args.if_pop("-epochs"))
			nd->setEpochs(args.pop_uint());
		else if(args.if_pop("-features"))
			LoadData(args, hFeatures);
		else if(args.if_pop("-filterLogarithm"))
			nd->setFilterLogarithm(true);
		else
			throw Ex("Invalid option: ", args.peek());
	}
	
	if(hFeatures.get() == NULL)
	{
		// Generate features
		GMatrix *pFeatures = new GMatrix(pSeries->rows(), 1);
		for(size_t i = 0; i < pSeries->rows(); i++)
		{
			pFeatures->row(i)[0] = i / (double) pSeries->rows();
		}
		hFeatures.reset(pFeatures);
	}
	
	// Train
	GMatrix *pFeatures = hFeatures.get();
	nd->train(*pFeatures, *pSeries);
	
	// Output the trained model
	GDom doc;
	doc.setRoot(nd->serialize(&doc));
	doc.writeJson(cout);
}
开发者ID:BaskWind,项目名称:waffles,代码行数:65,代码来源:main.cpp


注:本文中的GMatrix::cloneSub方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。