当前位置: 首页>>代码示例>>C++>>正文


C++ FilterContext::getSession方法代码示例

本文整理汇总了C++中FilterContext::getSession方法的典型用法代码示例。如果您正苦于以下问题:C++ FilterContext::getSession方法的具体用法?C++ FilterContext::getSession怎么用?C++ FilterContext::getSession使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在FilterContext的用法示例。


在下文中一共展示了FilterContext::getSession方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: eq

FilterContext
ClampFilter::push( FeatureList& features, const FilterContext& cx )
{
    const Session* session = cx.getSession();
    if ( !session ) {
        OE_WARN << LC << "No session - session is required for elevation clamping" << std::endl;
        return cx;
    }

    // the map against which we'll be doing elevation clamping
    MapFrame mapf = session->createMapFrame( Map::ELEVATION_LAYERS );

    const SpatialReference* mapSRS     = mapf.getProfile()->getSRS();
    const SpatialReference* featureSRS = cx.profile()->getSRS();
    bool isGeocentric = session->getMapInfo().isGeocentric();

    // establish an elevation query interface based on the features' SRS.
    ElevationQuery eq( mapf );

    for( FeatureList::iterator i = features.begin(); i != features.end(); ++i )
    {
        Feature* feature = i->get();
        
        GeometryIterator gi( feature->getGeometry() );
        while( gi.hasMore() )
        {
            Geometry* geom = gi.next();

            if ( isGeocentric )
            {
                // convert to map coords:
                cx.toWorld( geom );
                mapSRS->transformFromECEF( geom );

                // populate the elevations:
                eq.getElevations( geom, mapSRS );

                // convert back to geocentric:
                mapSRS->transformToECEF( geom );
                cx.toLocal( geom );
            }

            else
            {
                // clamps the entire array to the highest available resolution.
                eq.getElevations( geom, featureSRS );
            }
        }
    }

    return cx;
}
开发者ID:sourcepole,项目名称:osgearth,代码行数:52,代码来源:ClampFilter.cpp

示例2:

void
FeaturesToNodeFilter::computeLocalizers( const FilterContext& context )
{
    if ( context.isGeoreferenced() )
    {
        if ( context.getSession()->getMapInfo().isGeocentric() )
        {
            const SpatialReference* geogSRS = context.profile()->getSRS()->getGeographicSRS();
            GeoExtent geodExtent = context.extent()->transform( geogSRS );
            if ( geodExtent.width() < 180.0 )
            {
                osg::Vec3d centroid, centroidECEF;
                geodExtent.getCentroid( centroid.x(), centroid.y() );
                geogSRS->transform( centroid, geogSRS->getECEF(), centroidECEF );
                geogSRS->getECEF()->createLocalToWorld( centroidECEF, _local2world );
                _world2local.invert( _local2world );
            }
        }

        else // projected
        {
            if ( context.extent().isSet() )
            {
                osg::Vec3d centroid;
                context.extent()->getCentroid(centroid.x(), centroid.y());

                context.extent()->getSRS()->transform(
                    centroid,
                    context.getSession()->getMapInfo().getProfile()->getSRS(),
                    centroid );

                _world2local.makeTranslate( -centroid );
                _local2world.invert( _world2local );
            }
        }
    }
}
开发者ID:InterAtlas-ML,项目名称:osgearth,代码行数:37,代码来源:Filter.cpp

示例3:

void
FeaturesToNodeFilter::computeLocalizers( const FilterContext& context, const osgEarth::GeoExtent &extent, osg::Matrixd &out_w2l, osg::Matrixd &out_l2w )
{
    if ( context.isGeoreferenced() )
    {
        if ( context.getSession()->getMapInfo().isGeocentric() )
        {
            const SpatialReference* geogSRS = context.profile()->getSRS()->getGeographicSRS();
            GeoExtent geodExtent = extent.transform( geogSRS );
            if ( geodExtent.width() < 180.0 )
            {
                osg::Vec3d centroid, centroidECEF;
                geodExtent.getCentroid( centroid.x(), centroid.y() );
                geogSRS->transform( centroid, geogSRS->getECEF(), centroidECEF );
                geogSRS->getECEF()->createLocalToWorld( centroidECEF, out_l2w );
                out_w2l.invert( out_l2w );
            }
        }

        else // projected
        {
            if ( extent.isValid() )
            {
                osg::Vec3d centroid;
                extent.getCentroid(centroid.x(), centroid.y());

                extent.getSRS()->transform(
                    centroid,
                    context.getSession()->getMapInfo().getProfile()->getSRS(),
                    centroid );

                out_w2l.makeTranslate( -centroid );
                out_l2w.invert( out_w2l );
            }
        }
    }
}
开发者ID:Brucezhou1979,项目名称:osgearth,代码行数:37,代码来源:Filter.cpp

示例4: pushAndClamp

FilterContext
AltitudeFilter::push( FeatureList& features, FilterContext& cx )
{
    bool clamp = 
        _altitude.valid() && 
        _altitude->clamping() != AltitudeSymbol::CLAMP_NONE &&
        cx.getSession()       != 0L &&
        cx.profile()          != 0L;

    if ( clamp )
        pushAndClamp( features, cx );
    else
        pushAndDontClamp( features, cx );

    return cx;
}
开发者ID:airwzz999,项目名称:osgearth-for-android,代码行数:16,代码来源:AltitudeFilter.cpp

示例5: prop

v8::Handle<v8::Value>
JSFilterContext::PropertyCallback(v8::Local<v8::String> name, const v8::AccessorInfo& info)
{
    FilterContext* context = V8Util::UnwrapObject<FilterContext>(info.Holder());

    v8::String::Utf8Value utf8_value(name);
    std::string prop(*utf8_value);

    if (!context || prop.empty())
        return v8::Handle<v8::Value>();

    if (prop == "session")
        return JSSession::WrapSession(const_cast<Session*>(context->getSession()));
    if (prop == "profile")
        return JSFeatureProfile::WrapFeatureProfile(const_cast<FeatureProfile*>(context->profile().get()));
    if (prop == "extent" && context->extent().isSet())
        return JSGeoExtent::WrapGeoExtent(const_cast<osgEarth::GeoExtent*>(&context->extent().get()));
    //if (prop == "geocentric")
    //  return v8::Boolean::New(context->isGeocentric());

    return v8::Handle<v8::Value>();
}
开发者ID:nedbrek,项目名称:osgearth,代码行数:22,代码来源:JSWrappers.cpp

示例6: parts

bool
BuildGeometryFilter::process( FeatureList& features, const FilterContext& context )
{
    bool makeECEF = false;
    const SpatialReference* featureSRS = 0L;
    const SpatialReference* mapSRS = 0L;

    if ( context.isGeoreferenced() )
    {
        makeECEF   = context.getSession()->getMapInfo().isGeocentric();
        featureSRS = context.extent()->getSRS();
        mapSRS     = context.getSession()->getMapInfo().getProfile()->getSRS();
    }

    for( FeatureList::iterator f = features.begin(); f != features.end(); ++f )
    {
        Feature* input = f->get();

        GeometryIterator parts( input->getGeometry(), false );
        while( parts.hasMore() )
        {
            Geometry* part = parts.next();

            // skip empty geometry
            if ( part->size() == 0 )
                continue;

            const Style& myStyle = input->style().isSet() ? *input->style() : _style;

            bool  setLinePropsHere   = input->style().isSet(); // otherwise it will be set globally, we assume
            float width              = 1.0f;
            bool  hasPolyOutline     = false;

            const PointSymbol*   pointSymbol = myStyle.get<PointSymbol>();
            const LineSymbol*    lineSymbol  = myStyle.get<LineSymbol>();
            const PolygonSymbol* polySymbol  = myStyle.get<PolygonSymbol>();

            // resolve the geometry type from the component type and the symbology:
            Geometry::Type renderType = Geometry::TYPE_UNKNOWN;

            // First priority is a matching part type and symbol:
            if ( polySymbol != 0L && part->getType() == Geometry::TYPE_POLYGON )
            {
                renderType = Geometry::TYPE_POLYGON;
            }
            else if ( lineSymbol != 0L && part->isLinear() )
            {
                renderType = part->getType();
            }
            else if ( pointSymbol != 0L && part->getType() == Geometry::TYPE_POINTSET )
            {
                renderType = Geometry::TYPE_POINTSET;
            }

            // Second priority is the symbol:
            else if ( polySymbol != 0L )
            {
                renderType = Geometry::TYPE_POLYGON;
            }
            else if ( lineSymbol != 0L )
            {
                if ( part->getType() == Geometry::TYPE_POLYGON )
                    renderType = Geometry::TYPE_RING;
                else
                    renderType = Geometry::TYPE_LINESTRING;
            }
            else if ( pointSymbol != 0L )
            {
                renderType = Geometry::TYPE_POINTSET;
            }

            // No symbol? just use the geometry type.
            else
            {
                renderType = part->getType();
            }

            // validate the geometry:
            if ( renderType == Geometry::TYPE_POLYGON && part->size() < 3 )
                continue;
            else if ( (renderType == Geometry::TYPE_LINESTRING || renderType == Geometry::TYPE_RING) && part->size() < 2 )
                continue;

            // resolve the color:
            osg::Vec4f primaryColor =
                polySymbol ? osg::Vec4f(polySymbol->fill()->color()) :
                lineSymbol ? osg::Vec4f(lineSymbol->stroke()->color()) :
                pointSymbol ? osg::Vec4f(pointSymbol->fill()->color()) :
                osg::Vec4f(1,1,1,1);
            
            osg::Geometry* osgGeom = new osg::Geometry();
            osgGeom->setUseVertexBufferObjects( _useVertexBufferObjects.value() );

            if ( _featureNameExpr.isSet() )
            {
                const std::string& name = input->eval( _featureNameExpr.mutable_value(), &context );
                osgGeom->setName( name );
            }

            // build the geometry:
//.........这里部分代码省略.........
开发者ID:Sylla,项目名称:osgearth,代码行数:101,代码来源:BuildGeometryFilter.cpp

示例7: eq

void
AltitudeFilter::pushAndClamp( FeatureList& features, FilterContext& cx )
{
    const Session* session = cx.getSession();

    // the map against which we'll be doing elevation clamping
    //MapFrame mapf = session->createMapFrame( Map::ELEVATION_LAYERS );
    MapFrame mapf = session->createMapFrame( 
        (Map::ModelParts)(Map::TERRAIN_LAYERS | Map::MODEL_LAYERS) );

    const SpatialReference* mapSRS = mapf.getProfile()->getSRS();
    osg::ref_ptr<const SpatialReference> featureSRS = cx.profile()->getSRS();

    // establish an elevation query interface based on the features' SRS.
    ElevationQuery eq( mapf );

    // want a result even if it's low res
    eq.setFallBackOnNoData( true );

    NumericExpression scaleExpr;
    if ( _altitude->verticalScale().isSet() )
        scaleExpr = *_altitude->verticalScale();

    NumericExpression offsetExpr;
    if ( _altitude->verticalOffset().isSet() )
        offsetExpr = *_altitude->verticalOffset();

    // whether to record the min/max height-above-terrain values.
    bool collectHATs =
        _altitude->clamping() == AltitudeSymbol::CLAMP_RELATIVE_TO_TERRAIN ||
        _altitude->clamping() == AltitudeSymbol::CLAMP_ABSOLUTE;

    // whether to clamp every vertex (or just the centroid)
    bool perVertex =
        _altitude->binding() == AltitudeSymbol::BINDING_VERTEX;

    // whether the SRS's have a compatible vertical datum.
    bool vertEquiv =
        featureSRS->isVertEquivalentTo( mapSRS );



    for( FeatureList::iterator i = features.begin(); i != features.end(); ++i )
    {
        Feature* feature = i->get();
        
        // run a symbol script if present.
        if ( _altitude.valid() && _altitude->script().isSet() )
        {
            StringExpression temp( _altitude->script().get() );
            feature->eval( temp, &cx );
        }

        double maxTerrainZ  = -DBL_MAX;
        double minTerrainZ  =  DBL_MAX;
        double minHAT       =  DBL_MAX;
        double maxHAT       = -DBL_MAX;

        double scaleZ = 1.0;
        if ( _altitude.valid() && _altitude->verticalScale().isSet() )
            scaleZ = feature->eval( scaleExpr, &cx );

        double offsetZ = 0.0;
        if ( _altitude.valid() && _altitude->verticalOffset().isSet() )
            offsetZ = feature->eval( offsetExpr, &cx );
        
        GeometryIterator gi( feature->getGeometry() );
        while( gi.hasMore() )
        {
            Geometry* geom = gi.next();

            // Absolute heights in Z. Only need to collect the HATs; the geometry
            // remains unchanged.
            if ( _altitude->clamping() == AltitudeSymbol::CLAMP_ABSOLUTE )
            {
                if ( perVertex )
                {
                    std::vector<double> elevations;
                    elevations.reserve( geom->size() );

                    if ( eq.getElevations( geom->asVector(), featureSRS, elevations, _maxRes ) )
                    {
                        for( unsigned i=0; i<geom->size(); ++i )
                        {
                            osg::Vec3d& p = (*geom)[i];

                            p.z() *= scaleZ;
                            p.z() += offsetZ;

                            double z = p.z();

                            if ( !vertEquiv )
                            {
                                osg::Vec3d tempgeo;
                                if ( !featureSRS->transform(p, mapSRS->getGeographicSRS(), tempgeo) )
                                    z = tempgeo.z();
                            }

                            double hat = z - elevations[i];

//.........这里部分代码省略.........
开发者ID:3dcl,项目名称:osgearth,代码行数:101,代码来源:AltitudeFilter.cpp

示例8: zfinder

bool
ExtrudeGeometryFilter::extrudeGeometry(const Geometry*         input,
                                       double                  height,
                                       double                  heightOffset,
                                       bool                    flatten,
                                       osg::Geometry*          walls,
                                       osg::Geometry*          roof,
                                       osg::Geometry*          base,
                                       osg::Geometry*          outline,
                                       const osg::Vec4&        wallColor,
                                       const osg::Vec4&        wallBaseColor,
                                       const osg::Vec4&        roofColor,
                                       const osg::Vec4&        outlineColor,
                                       const SkinResource*     wallSkin,
                                       const SkinResource*     roofSkin,
                                       FilterContext&          cx )
{
    bool makeECEF = false;
    const SpatialReference* srs = 0L;
    const SpatialReference* mapSRS = 0L;

    if ( cx.isGeoreferenced() )
    {
       srs = cx.extent()->getSRS();
       makeECEF = cx.getSession()->getMapInfo().isGeocentric();
       mapSRS = cx.getSession()->getMapInfo().getProfile()->getSRS();
    }

    bool made_geom = false;

    double tex_width_m   = wallSkin ? *wallSkin->imageWidth() : 1.0;
    double tex_height_m  = wallSkin ? *wallSkin->imageHeight() : 1.0;
    bool   tex_repeats_y = wallSkin ? *wallSkin->isTiled() : false;
    bool   useColor      = (!wallSkin || wallSkin->texEnvMode() != osg::TexEnv::DECAL) && !_makeStencilVolume;

    bool isPolygon = input->getComponentType() == Geometry::TYPE_POLYGON;

    unsigned pointCount = input->getTotalPointCount();
    
    // If we are extruding a polygon, and applying a wall texture, we need an extra
    // point in the geometry in order to close the polygon and generate a unique
    // texture coordinate for that final point.
    bool isSkinnedPolygon = isPolygon && wallSkin != 0L;

    // Total number of verts. Add 2 to close a polygon (necessary so the first and last
    // points can have unique texture coordinates)
    unsigned numWallVerts = 2 * pointCount + (isSkinnedPolygon? (2 * input->getNumGeometries()) : 0);

    // create all the OSG geometry components
    osg::Vec3Array* verts = new osg::Vec3Array( numWallVerts );
    walls->setVertexArray( verts );

    osg::Vec2Array* wallTexcoords = 0L;
    if ( wallSkin )
    { 
        wallTexcoords = new osg::Vec2Array( numWallVerts );
        walls->setTexCoordArray( 0, wallTexcoords );
    }

    osg::Vec4Array* colors = 0L;
    if ( useColor )
    {
        // per-vertex colors are necessary if we are going to use the MeshConsolidator -gw
        colors = new osg::Vec4Array();
        colors->reserve( numWallVerts );
        colors->assign( numWallVerts, wallColor );
        walls->setColorArray( colors );
        walls->setColorBinding( osg::Geometry::BIND_PER_VERTEX );
    }

    // set up rooftop tessellation and texturing, if necessary:
    osg::Vec3Array* roofVerts     = 0L;
    osg::Vec2Array* roofTexcoords = 0L;
    float           roofRotation  = 0.0f;
    Bounds          roofBounds;
    float           sinR = 0.0f, cosR = 0.0f;
    double          roofTexSpanX = 0.0, roofTexSpanY = 0.0;
    osg::ref_ptr<const SpatialReference> roofProjSRS;

    if ( roof )
    {
        roofVerts = new osg::Vec3Array( pointCount );
        roof->setVertexArray( roofVerts );

        // per-vertex colors are necessary if we are going to use the MeshConsolidator -gw
        if ( useColor )
        {
            osg::Vec4Array* roofColors = new osg::Vec4Array();
            roofColors->reserve( pointCount );
            roofColors->assign( pointCount, roofColor );
            roof->setColorArray( roofColors );
            roof->setColorBinding( osg::Geometry::BIND_PER_VERTEX );
        }

        if ( roofSkin )
        {
            roofTexcoords = new osg::Vec2Array( pointCount );
            roof->setTexCoordArray( 0, roofTexcoords );

            // Get the orientation of the geometry. This is a hueristic that will help 
//.........这里部分代码省略.........
开发者ID:jy4618272,项目名称:osgearth,代码行数:101,代码来源:ExtrudeGeometryFilter.cpp

示例9: markerURI

bool
SubstituteModelFilter::process(const FeatureList&           features,                               
                               const MarkerSymbol*          symbol,
                               Session*                     session,
                               osg::Group*                  attachPoint,
                               FilterContext&               context )
{
    bool makeECEF = context.getSession()->getMapInfo().isGeocentric();

    // first, go through the features and build the model cache. Apply the model matrix' scale
    // factor to any AutoTransforms directly (cloning them as necessary)
    std::map< std::pair<URI, float>, osg::ref_ptr<osg::Node> > uniqueModels;
    //std::map< Feature*, osg::ref_ptr<osg::Node> > featureModels;

    StringExpression  uriEx   = *symbol->url();
    NumericExpression scaleEx = *symbol->scale();

    for( FeatureList::const_iterator f = features.begin(); f != features.end(); ++f )
    {
        Feature* input = f->get();

        // evaluate the marker URI expression:
        StringExpression uriEx = *symbol->url();
        URI markerURI( input->eval(uriEx, &context), uriEx.uriContext() );

        // find the corresponding marker in the cache
        MarkerResource* marker = 0L;
        MarkerCache::Record rec = _markerCache.get( markerURI );
        if ( rec.valid() ) {
            marker = rec.value();
        }
        else {
            marker = new MarkerResource();
            marker->uri() = markerURI;
            _markerCache.insert( markerURI, marker );
        }

        // evalute the scale expression (if there is one)
        float scale = 1.0f;
        osg::Matrixd scaleMatrix;

        if ( symbol->scale().isSet() )
        {
            scale = input->eval( scaleEx, &context );
            if ( scale == 0.0 )
                scale = 1.0;
            scaleMatrix = osg::Matrix::scale( scale, scale, scale );
        }

        // how that we have a marker source, create a node for it
        std::pair<URI,float> key( markerURI, scale );
        osg::ref_ptr<osg::Node>& model = uniqueModels[key];
        if ( !model.valid() )
        {
            model = context.resourceCache()->getMarkerNode( marker );

            if ( scale != 1.0f && dynamic_cast<osg::AutoTransform*>( model.get() ) )
            {
                // clone the old AutoTransform, set the new scale, and copy over its children.
                osg::AutoTransform* oldAT = dynamic_cast<osg::AutoTransform*>(model.get());
                osg::AutoTransform* newAT = osg::clone( oldAT );

                // make a scaler and put it between the new AutoTransform and its kids
                osg::MatrixTransform* scaler = new osg::MatrixTransform(osg::Matrix::scale(scale,scale,scale));
                for( unsigned i=0; i<newAT->getNumChildren(); ++i )
                    scaler->addChild( newAT->getChild(0) );
                newAT->removeChildren(0, newAT->getNumChildren());
                newAT->addChild( scaler );
                model = newAT;
            }
        }

        if ( model.valid() )
        {
            GeometryIterator gi( input->getGeometry(), false );
            while( gi.hasMore() )
            {
                Geometry* geom = gi.next();

                for( unsigned i=0; i<geom->size(); ++i )
                {
                    osg::Matrixd mat;

                    osg::Vec3d point = (*geom)[i];
                    if ( makeECEF )
                    {
                        // the "rotation" element lets us re-orient the instance to ensure it's pointing up. We
                        // could take a shortcut and just use the current extent's local2world matrix for this,
                        // but if the tile is big enough the up vectors won't be quite right.
                        osg::Matrixd rotation;
                        ECEF::transformAndGetRotationMatrix( point, context.profile()->getSRS(), point, rotation );
                        mat = rotation * scaleMatrix * osg::Matrixd::translate( point ) * _world2local;
                    }
                    else
                    {
                        mat = scaleMatrix * osg::Matrixd::translate( point ) * _world2local;
                    }

                    osg::MatrixTransform* xform = new osg::MatrixTransform();
                    xform->setMatrix( mat );
//.........这里部分代码省略.........
开发者ID:spencerg,项目名称:osgearth,代码行数:101,代码来源:SubstituteModelFilter.cpp

示例10: uriEx

//clustering:
//  troll the external model for geodes. for each geode, create a geode in the target
//  model. then, for each geometry in that geode, replicate it once for each instance of
//  the model in the feature batch and transform the actual verts to a local offset
//  relative to the tile centroid. Finally, reassemble all the geodes and optimize. 
//  hopefully stateset sharing etc will work out. we may need to strip out LODs too.
bool
SubstituteModelFilter::cluster(const FeatureList&           features,
                               const MarkerSymbol*          symbol, 
                               Session*                     session,
                               osg::Group*                  attachPoint,
                               FilterContext&               context )
{    
    MarkerToFeatures markerToFeatures;

    // first, sort the features into buckets, each bucket corresponding to a
    // unique marker.
    for (FeatureList::const_iterator i = features.begin(); i != features.end(); ++i)
    {
        Feature* f = i->get();

        // resolve the URI for the marker:
        StringExpression uriEx( *symbol->url() );
        URI markerURI( f->eval( uriEx, &context ), uriEx.uriContext() );

        // find and load the corresponding marker model. We're using the session-level
        // object store to cache models. This is thread-safe sine we are always going
        // to CLONE the model before using it.
        osg::ref_ptr<osg::Node> model = context.getSession()->getObject<osg::Node>( markerURI.full() );
        if ( !model.valid() )
        {
            osg::ref_ptr<MarkerResource> mres = new MarkerResource();
            mres->uri() = markerURI;
            model = mres->createNode( context.getSession()->getDBOptions() );
            if ( model.valid() )
            {
                // store it, but only if there isn't already one in there.
                context.getSession()->putObject( markerURI.full(), model.get(), false );
            }
        }

        if ( model.valid() )
        {
            MarkerToFeatures::iterator itr = markerToFeatures.find( model.get() );
            if (itr == markerToFeatures.end())
                markerToFeatures[ model.get() ].push_back( f );
            else
                itr->second.push_back( f );
        }
    }

    //For each model, cluster the features that use that marker
    for (MarkerToFeatures::iterator i = markerToFeatures.begin(); i != markerToFeatures.end(); ++i)
    {
        osg::Node* prototype = i->first;

        // we're using the Session cache since we know we'll be cloning.
        if ( prototype )
        {
            osg::Node* clone = osg::clone( prototype, osg::CopyOp::DEEP_COPY_ALL );

            // ..and apply the clustering to the copy.
            ClusterVisitor cv( i->second, symbol, this, context );
            clone->accept( cv );

            attachPoint->addChild( clone );
        }
    }

    return true;
}
开发者ID:spencerg,项目名称:osgearth,代码行数:71,代码来源:SubstituteModelFilter.cpp

示例11: instanceURI

bool
SubstituteModelFilter::process(const FeatureList&           features,
                               const InstanceSymbol*        symbol,
                               Session*                     session,
                               osg::Group*                  attachPoint,
                               FilterContext&               context )
{
    // Establish SRS information:
    bool makeECEF = context.getSession()->getMapInfo().isGeocentric();
    const SpatialReference* targetSRS = context.getSession()->getMapInfo().getSRS();

    // first, go through the features and build the model cache. Apply the model matrix' scale
    // factor to any AutoTransforms directly (cloning them as necessary)
    std::map< std::pair<URI, float>, osg::ref_ptr<osg::Node> > uniqueModels;

    // keep track of failed URIs so we don't waste time or warning messages on them
    std::set< URI > missing;

    StringExpression  uriEx   = *symbol->url();
    NumericExpression scaleEx = *symbol->scale();

    const ModelSymbol* modelSymbol = dynamic_cast<const ModelSymbol*>(symbol);
    const IconSymbol*  iconSymbol  = dynamic_cast<const IconSymbol*> (symbol);

    NumericExpression headingEx;
    if ( modelSymbol )
        headingEx = *modelSymbol->heading();

    for( FeatureList::const_iterator f = features.begin(); f != features.end(); ++f )
    {
        Feature* input = f->get();

        // evaluate the instance URI expression:
        StringExpression uriEx = *symbol->url();
        URI instanceURI( input->eval(uriEx, &context), uriEx.uriContext() );

        // find the corresponding marker in the cache
        osg::ref_ptr<InstanceResource> instance;
        if ( !findResource(instanceURI, symbol, context, missing, instance) )
            continue;

        // evalute the scale expression (if there is one)
        float scale = 1.0f;
        osg::Matrixd scaleMatrix;

        if ( symbol->scale().isSet() )
        {
            scale = input->eval( scaleEx, &context );
            if ( scale == 0.0 )
                scale = 1.0;
            if ( scale != 1.0 )
                _normalScalingRequired = true;
            scaleMatrix = osg::Matrix::scale( scale, scale, scale );
        }
        
        osg::Matrixd rotationMatrix;

        if ( modelSymbol && modelSymbol->heading().isSet() )
        {
            float heading = input->eval(headingEx, &context);
            rotationMatrix.makeRotate( osg::Quat(osg::DegreesToRadians(heading), osg::Vec3(0,0,1)) );
        }

        // how that we have a marker source, create a node for it
        std::pair<URI,float> key( instanceURI, scale );

        // cache nodes per instance.
        osg::ref_ptr<osg::Node>& model = uniqueModels[key];
        if ( !model.valid() )
        {
            context.resourceCache()->getInstanceNode( instance.get(), model );

            // if icon decluttering is off, install an AutoTransform.
            if ( iconSymbol )
            {
                if ( iconSymbol->declutter() == true )
                {
                    Decluttering::setEnabled( model->getOrCreateStateSet(), true );
                }
                else if ( dynamic_cast<osg::AutoTransform*>(model.get()) == 0L )
                {
                    osg::AutoTransform* at = new osg::AutoTransform();
                    at->setAutoRotateMode( osg::AutoTransform::ROTATE_TO_SCREEN );
                    at->setAutoScaleToScreen( true );
                    at->addChild( model );
                    model = at;
                }
            }
        }

        if ( model.valid() )
        {
            GeometryIterator gi( input->getGeometry(), false );
            while( gi.hasMore() )
            {
                Geometry* geom = gi.next();

                // if necessary, transform the points to the target SRS:
                if ( !makeECEF && !targetSRS->isEquivalentTo(context.profile()->getSRS()) )
                {
//.........这里部分代码省略.........
开发者ID:dreamfrog,项目名称:osgearth,代码行数:101,代码来源:SubstituteModelFilter.cpp

示例12: xform

osg::Node*
GeomCompiler::compile(FeatureCursor*        cursor,
                      const Style&          style,
                      const FilterContext&  context)

{
    if ( !context.profile() ) {
        OE_WARN << LC << "Valid feature profile required" << std::endl;
        return 0L;
    }

    if ( style.empty() ) {
        OE_WARN << LC << "Non-empty style required" << std::endl;
        return 0L;
    }

    osg::ref_ptr<osg::Group> resultGroup = new osg::Group();

    // start by making a working copy of the feature set
    FeatureList workingSet;
    cursor->fill( workingSet );

    // create a filter context that will track feature data through the process
    FilterContext cx = context;
    if ( !cx.extent().isSet() )
        cx.extent() = cx.profile()->getExtent();

    // only localize coordinates if the map if geocentric AND the extent is
    // less than 180 degrees.
    const MapInfo& mi = cx.getSession()->getMapInfo();
    GeoExtent workingExtent = cx.extent()->transform( cx.profile()->getSRS()->getGeographicSRS() );
    bool localize = mi.isGeocentric() && workingExtent.width() < 180.0;

    // go through the Style and figure out which filters to use.
    const MarkerSymbol*    marker    = style.get<MarkerSymbol>();
    const PointSymbol*     point     = style.get<PointSymbol>();
    const LineSymbol*      line      = style.get<LineSymbol>();
    const PolygonSymbol*   polygon   = style.get<PolygonSymbol>();
    const ExtrusionSymbol* extrusion = style.get<ExtrusionSymbol>();
    const AltitudeSymbol*  altitude  = style.get<AltitudeSymbol>();
    const TextSymbol*      text      = style.get<TextSymbol>();
    
    // transform the features into the map profile
    TransformFilter xform( mi.getProfile()->getSRS(), mi.isGeocentric() );   
    xform.setLocalizeCoordinates( localize );
    if ( altitude && altitude->verticalOffset().isSet() )
        xform.setMatrix( osg::Matrixd::translate(0, 0, *altitude->verticalOffset()) );
    cx = xform.push( workingSet, cx );

    bool clampRequired =
        altitude && altitude->clamping() != AltitudeSymbol::CLAMP_NONE;

    // model substitution
    if ( marker )
    {
        if ( marker->placement() == MarkerSymbol::PLACEMENT_RANDOM   ||
             marker->placement() == MarkerSymbol::PLACEMENT_INTERVAL )
        {
            ScatterFilter scatter;
            scatter.setDensity( *marker->density() );
            scatter.setRandom( marker->placement() == MarkerSymbol::PLACEMENT_RANDOM );
            scatter.setRandomSeed( *marker->randomSeed() );
            cx = scatter.push( workingSet, cx );
        }

        if ( clampRequired )
        {
            ClampFilter clamp;
            clamp.setIgnoreZ( altitude->clamping() == AltitudeSymbol::CLAMP_TO_TERRAIN );
            cx = clamp.push( workingSet, cx );
            clampRequired = false;
        }

        SubstituteModelFilter sub( style );
        sub.setClustering( *_options.clustering() );
        if ( marker->scale().isSet() )
            sub.setModelMatrix( osg::Matrixd::scale( *marker->scale() ) );

        cx = sub.push( workingSet, cx );

        osg::Node* node = sub.getNode();
        if ( node )
            resultGroup->addChild( node );
    }

    // extruded geometry
    if ( extrusion && ( line || polygon ) )
    {
        if ( clampRequired )
        {
            ClampFilter clamp;
            clamp.setIgnoreZ( altitude->clamping() == AltitudeSymbol::CLAMP_TO_TERRAIN );
            if ( extrusion->heightReference() == ExtrusionSymbol::HEIGHT_REFERENCE_MSL )
                clamp.setMaxZAttributeName( "__max_z");
            cx = clamp.push( workingSet, cx );
            clampRequired = false;
        }

        ExtrudeGeometryFilter extrude;
        if ( extrusion )
//.........这里部分代码省略.........
开发者ID:korash,项目名称:osgearth,代码行数:101,代码来源:GeomCompiler.cpp

示例13: if


//.........这里部分代码省略.........
        if ( node )
        {
            resultGroup->addChild( node );
        }
        
    }

    // simple geometry
    else if ( point || line || polygon )
    {
        if ( altRequired )
        {
            AltitudeFilter clamp;
            clamp.setPropertiesFromStyle( style );
            sharedCX = clamp.push( workingSet, sharedCX );
            altRequired = false;
        }

        BuildGeometryFilter filter( style );
        if ( _options.maxGranularity().isSet() )
            filter.maxGranularity() = *_options.maxGranularity();
        if ( _options.geoInterp().isSet() )
            filter.geoInterp() = *_options.geoInterp();
        if ( _options.featureName().isSet() )
            filter.featureName() = *_options.featureName();

        osg::Node* node = filter.push( workingSet, sharedCX );
        if ( node )
        {
            resultGroup->addChild( node );
        }
    }

    if ( text || icon )
    {
        if ( altRequired )
        {
            AltitudeFilter clamp;
            clamp.setPropertiesFromStyle( style );
            sharedCX = clamp.push( workingSet, sharedCX );
            altRequired = false;
        }

        BuildTextFilter filter( style );
        osg::Node* node = filter.push( workingSet, sharedCX );
        if ( node )
        {
            resultGroup->addChild( node );
        }
    }

    if (Registry::capabilities().supportsGLSL())
    {
        if ( _options.shaderPolicy() == SHADERPOLICY_GENERATE )
        {
            // no ss cache because we will optimize later.
            Registry::shaderGenerator().run( 
                resultGroup.get(),
                "osgEarth.GeomCompiler" );
        }
        else if ( _options.shaderPolicy() == SHADERPOLICY_DISABLE )
        {
            resultGroup->getOrCreateStateSet()->setAttributeAndModes(
                new osg::Program(),
                osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE );
        }
    }

    // Optimize stateset sharing.
    if ( _options.optimizeStateSharing() == true )
    {
        // Common state set cache?
        osg::ref_ptr<StateSetCache> sscache;
        if ( sharedCX.getSession() )
        {
            // with a shared cache, don't combine statesets. They may be
            // in the live graph
            sscache = sharedCX.getSession()->getStateSetCache();
            sscache->consolidateStateAttributes( resultGroup.get() );
        }
        else 
        {
            // isolated: perform full optimization
            sscache = new StateSetCache();
            sscache->optimize( resultGroup.get() );
        }
    }

    //test: dump the tile to disk
    //osgDB::writeNodeFile( *(resultGroup.get()), "out.osg" );

#ifdef PROFILING
    osg::Timer_t p_end = osg::Timer::instance()->tick();
    OE_INFO << LC
        << "features = " << p_features
        << ", time = " << osg::Timer::instance()->delta_s(p_start, p_end) << " s." << std::endl;
#endif

    return resultGroup.release();
}
开发者ID:Vantica,项目名称:osgearth,代码行数:101,代码来源:GeometryCompiler.cpp

示例14: gi

bool
SubstituteModelFilter::process(const FeatureList&           features,                               
                               const MarkerSymbol*          symbol,
                               Session*                     session,
                               osg::Group*                  attachPoint,
                               FilterContext&               context )
{    
    bool makeECEF = context.getSession()->getMapInfo().isGeocentric();

    for( FeatureList::const_iterator f = features.begin(); f != features.end(); ++f )
    {
        Feature* input = f->get();

        GeometryIterator gi( input->getGeometry(), false );
        while( gi.hasMore() )
        {
            Geometry* geom = gi.next();

            for( unsigned i=0; i<geom->size(); ++i )
            {
                osg::Matrixd mat;

                osg::Vec3d point = (*geom)[i];
                if ( makeECEF )
                {
                    // the "rotation" element lets us re-orient the instance to ensure it's pointing up. We
                    // could take a shortcut and just use the current extent's local2world matrix for this,
                    // but it the tile is big enough the up vectors won't be quite right.
                    osg::Matrixd rotation;
                    ECEF::transformAndGetRotationMatrix( context.profile()->getSRS(), point, point, rotation );
                    mat = rotation * _modelMatrix * osg::Matrixd::translate( point ) * _world2local;
                }
                else
                {
                    mat = _modelMatrix * osg::Matrixd::translate( point ) * _world2local;
                }

                osg::MatrixTransform* xform = new osg::MatrixTransform();
                xform->setMatrix( mat );
                xform->setDataVariance( osg::Object::STATIC );
                MarkerFactory factory( session);
                osg::ref_ptr< osg::Node > model = factory.getOrCreateNode( input, symbol );
                if (model.get())
                {
                    xform->addChild( model.get() );
                }

                attachPoint->addChild( xform );

                // name the feature if necessary
                if ( !_featureNameExpr.empty() )
                {
                    const std::string& name = input->eval( _featureNameExpr );
                    if ( !name.empty() )
                        xform->setName( name );
                }
            }
        }
    }

    return true;
}
开发者ID:rdelmont,项目名称:osgearth,代码行数:62,代码来源:SubstituteModelFilter.cpp

示例15: zfinder

bool
ExtrudeGeometryFilter::buildStructure(const Geometry*         input,
                                      double                  height,
                                      double                  heightOffset,
                                      bool                    flatten,
                                      const SkinResource*     wallSkin,
                                      const SkinResource*     roofSkin,
                                      Structure&              structure,
                                      FilterContext&          cx )
{
    bool  makeECEF                 = false;
    const SpatialReference* srs    = 0L;
    const SpatialReference* mapSRS = 0L;

    if ( cx.isGeoreferenced() )
    {
       srs      = cx.extent()->getSRS();
       makeECEF = cx.getSession()->getMapInfo().isGeocentric();
       mapSRS   = cx.getSession()->getMapInfo().getProfile()->getSRS();
    }

    // whether this is a closed polygon structure.
    structure.isPolygon = (input->getComponentType() == Geometry::TYPE_POLYGON);

    // extrusion working variables
    double     targetLen = -DBL_MAX;
    osg::Vec3d minLoc(DBL_MAX, DBL_MAX, DBL_MAX);
    double     minLoc_len = DBL_MAX;
    osg::Vec3d maxLoc(0,0,0);
    double     maxLoc_len = 0;

    // Initial pass over the geometry does two things:
    // 1: Calculate the minimum Z across all parts.
    // 2: Establish a "target length" for extrusion
    double absHeight = fabs(height);

    ConstGeometryIterator zfinder( input );
    while( zfinder.hasMore() )
    {
        const Geometry* geom = zfinder.next();
        for( Geometry::const_iterator m = geom->begin(); m != geom->end(); ++m )
        {
            osg::Vec3d m_point = *m;

            if ( m_point.z() + absHeight > targetLen )
                targetLen = m_point.z() + absHeight;

            if (m_point.z() < minLoc.z())
                minLoc = m_point;

            if (m_point.z() > maxLoc.z())
                maxLoc = m_point;
        }
    }

    // apply the height offsets
    height    -= heightOffset;
    targetLen -= heightOffset;
    
    float   roofRotation  = 0.0f;
    Bounds  roofBounds;
    float   sinR = 0.0f, cosR = 0.0f;
    double  roofTexSpanX = 0.0, roofTexSpanY = 0.0;
    osg::ref_ptr<const SpatialReference> roofProjSRS;

    if ( roofSkin )
    {
        roofBounds = input->getBounds();

        // if our data is lat/long, we need to reproject the geometry and the bounds into a projected
        // coordinate system in order to properly generate tex coords.
        if ( srs && srs->isGeographic() )
        {
            osg::Vec2d geogCenter = roofBounds.center2d();
            roofProjSRS = srs->createUTMFromLonLat( Angle(geogCenter.x()), Angle(geogCenter.y()) );
            if ( roofProjSRS.valid() )
            {
                roofBounds.transform( srs, roofProjSRS.get() );
                osg::ref_ptr<Geometry> projectedInput = input->clone();
                srs->transform( projectedInput->asVector(), roofProjSRS.get() );
                roofRotation = getApparentRotation( projectedInput.get() );
            }
        }
        else
        {
            roofRotation = getApparentRotation( input );
        }
            
        sinR = sin(roofRotation);
        cosR = cos(roofRotation);

        if ( !roofSkin->isTiled().value() )
        {
            //note: non-tiled roofs don't really work atm.
            roofTexSpanX = cosR*roofBounds.width() - sinR*roofBounds.height();
            roofTexSpanY = sinR*roofBounds.width() + cosR*roofBounds.height();
        }
        else
        {
            roofTexSpanX = roofSkin->imageWidth().isSet() ? *roofSkin->imageWidth() : roofSkin->imageHeight().isSet() ? *roofSkin->imageHeight() : 10.0;
//.........这里部分代码省略.........
开发者ID:simedcn,项目名称:osgearth,代码行数:101,代码来源:ExtrudeGeometryFilter.cpp


注:本文中的FilterContext::getSession方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。