当前位置: 首页>>代码示例>>C++>>正文


C++ DataFrame::getTrainingLabel方法代码示例

本文整理汇总了C++中DataFrame::getTrainingLabel方法的典型用法代码示例。如果您正苦于以下问题:C++ DataFrame::getTrainingLabel方法的具体用法?C++ DataFrame::getTrainingLabel怎么用?C++ DataFrame::getTrainingLabel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DataFrame的用法示例。


在下文中一共展示了DataFrame::getTrainingLabel方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeErrorRate

  double RandomTree::computeErrorRate(DataFrame & data)
  {
    unsigned int correct = 0;
    unsigned int incorrect = 0;

    std::string result;

    for(unsigned int i = 0; i < _oobSet.size(); i++)
    {
      classifyDataVector(data.getDataVector(_oobSet[i]), result);

      if(result == data.getTrainingLabel(_oobSet[i]))
      {
        correct++;
      }
      else
      {
        incorrect++;
      }
    }

    return (double)incorrect / (double)(incorrect + correct);
  }
开发者ID:BSteine,项目名称:hootenanny,代码行数:23,代码来源:RandomTree.cpp

示例2: _build

  void RandomTree::_build(DataFrame & data, std::vector<unsigned int> & dataSet, TreeNode * node, unsigned int nodeSize)
  {
    static unsigned int idCtr = 0;
    node->leftChild = NULL;
    node->rightChild = NULL;

    if(data.isDataSetPure(dataSet) || dataSet.size() <= nodeSize)  //Data is pure
    { 
      //If data set is all of same class then it is pure and done
      //Give it a class label
      
      node->classLabel = data.getTrainingLabel(dataSet[0]);
      node->isPure = true;
      node->purityDelta = 0;
      node->rangeMin = node->rangeMax = 0;

      node->dataList = dataSet;
      idCtr++;
      node->nodeId = idCtr; 
    }
    else  //Data is not pure
    {
      std::vector<unsigned int> factors;
      unsigned int splitIdx = 0;
      unsigned int fIdx = 0;
      double splitVal = 0.0;
      double purityDelta = 0.0;

      data.selectRandomFactors(_factPerNode, factors);

      bool splitPossible = _igc.findDataSplit(data, factors, dataSet, splitIdx, fIdx, splitVal, purityDelta);

      if(splitPossible)  //Data is not all same value
      {
        node->isPure = false;

        std::vector<unsigned int> leftSplit;
        std::vector<unsigned int> rightSplit;
        node->leftChild = new TreeNode();
        node->rightChild = new TreeNode();

        node->splitValue = splitVal;
        node->factorIndex = fIdx;
        node->purityDelta = purityDelta;
        node->nodeId = 0;
       
        double minVal, maxVal, mean, q1, q3;

        double bandwidth = data.computeBandwidthByFactor(fIdx, dataSet, minVal, 
          maxVal, mean, q1, q3);
        bandwidth = bandwidth;
//         node->rangeMin = mean - (6 * bandwidth);
//         node->rangeMax = mean + (6 * bandwidth);
//           double midVal = (maxVal - minVal) / 2.0;
//           node->rangeMin = minVal - (0.5 *(maxVal - minVal));
//           node->rangeMax = maxVal + (0.5 * (maxVal - minVal));
         double iqr = q3 - q1;
         node->rangeMin = q1 - ( 3 * iqr);
         node->rangeMax = q3 + (3 * iqr);

       
        data.sortIndicesOnFactorValue(dataSet, fIdx);

        for(unsigned int i = 0; i < splitIdx; i++)
        {
          leftSplit.push_back(dataSet[i]);
        }
        _build(data, leftSplit, node->leftChild, nodeSize);

        for(unsigned int i = splitIdx; i < dataSet.size(); i++)
        {
          rightSplit.push_back(dataSet[i]);
        }

        _build(data, rightSplit, node->rightChild, nodeSize);
      }
      else  //Data is all same value
      {
        //No split possible (all factors values same across all factors)
        //Vote on classes and make pure node.
        
        node->classLabel = data.getMajorityTrainingLabel(dataSet);
        node->isPure = true;
        node->purityDelta = 0;

        node->dataList = dataSet;
        idCtr++;
        node->nodeId = idCtr;
      }
    }
  }
开发者ID:BSteine,项目名称:hootenanny,代码行数:91,代码来源:RandomTree.cpp


注:本文中的DataFrame::getTrainingLabel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。