本文整理汇总了C++中DataFrame::getNumDataVectors方法的典型用法代码示例。如果您正苦于以下问题:C++ DataFrame::getNumDataVectors方法的具体用法?C++ DataFrame::getNumDataVectors怎么用?C++ DataFrame::getNumDataVectors使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DataFrame
的用法示例。
在下文中一共展示了DataFrame::getNumDataVectors方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: _calculateEntropy
double SymmetricUncertaintyCalculator::_calculateEntropy(const DataFrame& df, int factorIndex)
{
typedef HashMap<int, int> ClassCounts;
ClassCounts cc;
for(unsigned int i = 0; i < df.getNumDataVectors(); i++)
{
double v = df.getDataElement(i, factorIndex);
// null values are not supported Use the DataFrameDiscretizer to "fix" nulls
if (DataFrame::isNull(v) == true)
{
throw Tgs::Exception("Null values are not supported by SymmetricUncertaintyCalculator");
}
cc[(int)(v + .5)]++;
}
double sum = 0.0;
double totalSize = df.getNumDataVectors();
for (ClassCounts::const_iterator classIt = cc.begin(); classIt != cc.end(); classIt++)
{
double count = classIt->second;
sum += count / totalSize * log2(count / totalSize);
}
return -sum;
}
示例2: findProximity
void RandomTree::findProximity(DataFrame & data, std::vector<unsigned int> & proximity)
{
std::vector<unsigned int> proxVec;
unsigned int dSize = data.getNumDataVectors();
proxVec.resize(dSize);
//Find out which node each vector is classified as
for(unsigned int i = 0; i < dSize; i++)
{
std::string resultClass;
unsigned int nodeId = classifyDataVector(data.getDataVector(i), resultClass);
proxVec[i] = nodeId;
}
for(unsigned int j = 0; j < dSize; j++)
{
unsigned int tempId = proxVec[j];
for(unsigned int k = j; k < dSize;j++)
{
if(proxVec[k] == tempId)
{
proximity[j * dSize + k] += 1;
}
}
}
}
示例3: _calculateConditionalEntropy
double SymmetricUncertaintyCalculator::_calculateConditionalEntropy(const DataFrame& dfY,
int factorIndexY, const DataFrame& dfX, int factorIndexX)
{
CondClassCounts ccc;
ClassCounts cc;
for(unsigned int i = 0; i < dfX.getNumDataVectors(); i++)
{
double vx = dfX.getDataElement(i, factorIndexX);
if (DataFrame::isNull(vx) == true)
{
throw Tgs::Exception("Null values are not supported by SymmetricUncertaintyCalculator");
}
int ex = (int)(vx + 0.5); // x enumeration
double vy = dfY.getDataElement(i, factorIndexY);
if (DataFrame::isNull(vy) == true)
{
throw Tgs::Exception("Null values are not supported by SymmetricUncertaintyCalculator");
}
int ey = (int)(vy + 0.5); // y enumeration
ccc[ex][ey]++;
cc[ex]++;
}
double sumX = 0.0;
double totalSize = dfX.getNumDataVectors();
for (CondClassCounts::const_iterator condIt = ccc.begin(); condIt != ccc.end(); condIt++)
{
const ClassCounts& classCounts = condIt->second;
double px = (double)cc[condIt->first] / totalSize; // p(x)
double sumY = 0.0;
for (ClassCounts::const_iterator classIt = classCounts.begin();
classIt != classCounts.end(); classIt++)
{
double count = classIt->second;
double pyx = count / (double)cc[condIt->first]; // p(y | x)
sumY += pyx * log2(pyx);
}
sumX += px * sumY;
}
return -sumX;
}
示例4: buildTest
void RandomTree::buildTest(DataFrame & data, unsigned int numFactors)
{
unsigned int nodeSize = 1;
_factPerNode = numFactors;
std::vector<unsigned int> indices;
indices.resize(data.getNumDataVectors());
for(unsigned int i = 0; i < indices.size(); i++)
{
indices[i] = i;
}
_root = new TreeNode();
_root->leftChild = NULL;
_root->rightChild = NULL;
_root->isPure = false;
_build(data, indices, _root, nodeSize);
}
示例5: compute
void PrincipalComponentsAnalysis::compute(DataFrame& df)
{
if (df.getNumFactors() > 2)
{
// see PrincipalComponentsAnalysisTest
cout << "You realize this hasn't been tested, right?" << endl;
}
Matrix dataMat(df.getNumFactors(), df.getNumDataVectors());
Matrix deviates(df.getNumFactors(), df.getNumDataVectors());
SymmetricMatrix covar(df.getNumFactors());
DiagonalMatrix eigenValues(df.getNumFactors());
Matrix eigenVectors;
ColumnVector means(df.getNumFactors());
means = 0.0;
RowVector h(df.getNumDataVectors());
h = 1.0;
for (unsigned int j = 0; j < df.getNumFactors(); j++)
{
if (df.isNominal(j))
{
throw Tgs::Exception("Only numeric values are supported.");
}
}
for(unsigned int i = 0; i < df.getNumDataVectors(); i++)
{
for (unsigned int j = 0; j < df.getNumFactors(); j++)
{
double v = df.getDataElement(i, j);
if (df.isNull(v))
{
throw Tgs::Exception("Only non-null values are supported.");
}
dataMat.element(j, i) = v;
means.element(j) += v / (double)df.getNumDataVectors();
}
}
try
{
deviates = dataMat - (means * h);
covar << (1.0/(float)df.getNumDataVectors()) * (deviates * deviates.t());
Jacobi::jacobi(covar, eigenValues, eigenVectors);
}
catch (const std::exception&)
{
throw;
}
catch (...)
{
throw Tgs::Exception("Unknown error while calculating PCA");
}
_sortEigens(eigenVectors, eigenValues);
_components.resize(df.getNumFactors());
for (unsigned int v = 0; v < df.getNumFactors(); v++)
{
_components[v].resize(df.getNumFactors());
for (unsigned int d = 0; d < df.getNumFactors(); d++)
{
_components[v][d] = eigenVectors.element(d, v);
}
}
}