本文整理汇总了C++中Ctxt::modDownToSet方法的典型用法代码示例。如果您正苦于以下问题:C++ Ctxt::modDownToSet方法的具体用法?C++ Ctxt::modDownToSet怎么用?C++ Ctxt::modDownToSet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Ctxt
的用法示例。
在下文中一共展示了Ctxt::modDownToSet方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: adjustLevelForMult
void adjustLevelForMult(Ctxt& c1, const char name1[], const ZZX& p1,
Ctxt& c2, const char name2[], const ZZX& p2,
const FHESecKey& sk)
{
const FHEcontext& context = c1.getContext();
// The highest possible level for this multiplication is the
// intersection of the two primeSets, without the special primes.
IndexSet primes = c1.getPrimeSet() & c2.getPrimeSet();
primes.remove(context.specialPrimes);
assert (!empty(primes));
// double phim = (double) context.zMstar.phiM();
// double factor = c_m*sqrt(log(phim))*4;
xdouble n1,n2,d1,d2;
xdouble dvar1 = c1.modSwitchAddedNoiseVar();
xdouble dvar2 = c2.modSwitchAddedNoiseVar();
// xdouble dmag1 = c1.modSwitchAddedNoiseMag(c_m);
// xdouble dmag2 = c2.modSwitchAddedNoiseMag(c_m);
// cout << " ** log(dvar1)=" << log(dvar1)
// << ", log(dvar2)=" << log(dvar2) <<endl;
double logF1, logF2;
xdouble n1var, n2var, modSize; // n1mag, n2mag,
// init to large number
xdouble noiseVarRatio=xexp(2*(context.logOfProduct(context.ctxtPrimes)
+ context.logOfProduct(context.specialPrimes)));
// xdouble noiseMagRatio=noiseVarRatio;
// Find the level that minimizes the noise-to-modulus ratio
bool oneLevelMore = false;
for (IndexSet levelDown = primes;
!empty(levelDown); levelDown.remove(levelDown.last())) {
// compute noise variane/magnitude after mod-switchign to this level
logF1 = context.logOfProduct(c1.getPrimeSet() / levelDown);
n1var = c1.getNoiseVar()/xexp(2*logF1);
logF2 = context.logOfProduct(c2.getPrimeSet() / levelDown);
n2var = c2.getNoiseVar()/xexp(2*logF2);
// compute modulus/noise ratio at this level
modSize = xexp(context.logOfProduct(levelDown));
xdouble nextNoiseVarRatio = sqrt((n1var+dvar1)*(n2var+dvar2))/modSize;
if (nextNoiseVarRatio < 2*noiseVarRatio || oneLevelMore) {
noiseVarRatio = nextNoiseVarRatio;
primes = levelDown; // record the currently best prime set
n1 = n1var; d1=dvar1; n2 = n2var; d2=dvar2;
}
oneLevelMore = (n1var > dvar1 || n2var > dvar2);
}
if (primes < c1.getPrimeSet()) {
cout << " ** " << c1.getPrimeSet()<<"=>"<<primes << endl;
cout << " n1var="<<n1<<", d1var="<<d1<<endl;;
c1.modDownToSet(primes);
cout << name1 << ".mDown:"; checkCiphertext(c1, p1, sk);
}
if (primes < c2.getPrimeSet()) {
cout << " ** " << c2.getPrimeSet()<<"=>"<<primes << endl;
cout << " n2var="<<n2<<", d2var="<<d2<<endl;;
c2.modDownToSet(primes);
cout << name2 << ".mDown:"; checkCiphertext(c2, p2, sk);
}
}
示例2: reCrypt
// bootstrap a ciphertext to reduce noise
void FHEPubKey::reCrypt(Ctxt &ctxt)
{
FHE_TIMER_START;
// Some sanity checks for dummy ciphertext
long ptxtSpace = ctxt.getPtxtSpace();
if (ctxt.isEmpty()) return;
if (ctxt.parts.size()==1 && ctxt.parts[0].skHandle.isOne()) {
// Dummy encryption, just ensure that it is reduced mod p
ZZX poly = to_ZZX(ctxt.parts[0]);
for (long i=0; i<poly.rep.length(); i++)
poly[i] = to_ZZ( rem(poly[i],ptxtSpace) );
poly.normalize();
ctxt.DummyEncrypt(poly);
return;
}
assert(recryptKeyID>=0); // check that we have bootstrapping data
long p = getContext().zMStar.getP();
long r = getContext().alMod.getR();
long p2r = getContext().alMod.getPPowR();
// the bootstrapping key is encrypted relative to plaintext space p^{e-e'+r}.
long e = getContext().rcData.e;
long ePrime = getContext().rcData.ePrime;
long p2ePrime = power_long(p,ePrime);
long q = power_long(p,e)+1;
assert(e>=r);
#ifdef DEBUG_PRINTOUT
cerr << "reCrypt: p="<<p<<", r="<<r<<", e="<<e<<" ePrime="<<ePrime
<< ", q="<<q<<endl;
#endif
// can only bootstrap ciphertext with plaintext-space dividing p^r
assert(p2r % ptxtSpace == 0);
FHE_NTIMER_START(preProcess);
// Make sure that this ciphertxt is in canonical form
if (!ctxt.inCanonicalForm()) ctxt.reLinearize();
// Mod-switch down if needed
IndexSet s = ctxt.getPrimeSet() / getContext().specialPrimes; // set minus
if (s.card()>2) { // leave only bottom two primes
long frst = s.first();
long scnd = s.next(frst);
IndexSet s2(frst,scnd);
s.retain(s2); // retain only first two primes
}
ctxt.modDownToSet(s);
// key-switch to the bootstrapping key
ctxt.reLinearize(recryptKeyID);
// "raw mod-switch" to the bootstrapping mosulus q=p^e+1.
vector<ZZX> zzParts; // the mod-switched parts, in ZZX format
double noise = ctxt.rawModSwitch(zzParts, q);
noise = sqrt(noise);
// Add multiples of p2r and q to make the zzParts divisible by p^{e'}
long maxU=0;
for (long i=0; i<(long)zzParts.size(); i++) {
// make divisible by p^{e'}
long newMax = makeDivisible(zzParts[i].rep, p2ePrime, p2r, q,
getContext().rcData.alpha);
zzParts[i].normalize(); // normalize after working directly on the rep
if (maxU < newMax) maxU = newMax;
}
// Check that the estimated noise is still low
if (noise + maxU*p2r*(skHwts[recryptKeyID]+1) > q/2)
cerr << " * noise/q after makeDivisible = "
<< ((noise + maxU*p2r*(skHwts[recryptKeyID]+1))/q) << endl;
for (long i=0; i<(long)zzParts.size(); i++)
zzParts[i] /= p2ePrime; // divide by p^{e'}
// Multiply the post-processed cipehrtext by the encrypted sKey
#ifdef DEBUG_PRINTOUT
cerr << "+ Before recryption ";
decryptAndPrint(cerr, recryptEkey, *dbgKey, *dbgEa, printFlag);
#endif
double p0size = to_double(coeffsL2Norm(zzParts[0]));
double p1size = to_double(coeffsL2Norm(zzParts[1]));
ctxt = recryptEkey;
ctxt.multByConstant(zzParts[1], p1size*p1size);
ctxt.addConstant(zzParts[0], p0size*p0size);
#ifdef DEBUG_PRINTOUT
cerr << "+ Before linearTrans1 ";
decryptAndPrint(cerr, ctxt, *dbgKey, *dbgEa, printFlag);
#endif
FHE_NTIMER_STOP(preProcess);
// Move the powerful-basis coefficients to the plaintext slots
FHE_NTIMER_START(LinearTransform1);
//.........这里部分代码省略.........