当前位置: 首页>>代码示例>>C++>>正文


C++ Ctxt::getPubKey方法代码示例

本文整理汇总了C++中Ctxt::getPubKey方法的典型用法代码示例。如果您正苦于以下问题:C++ Ctxt::getPubKey方法的具体用法?C++ Ctxt::getPubKey怎么用?C++ Ctxt::getPubKey使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Ctxt的用法示例。


在下文中一共展示了Ctxt::getPubKey方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

// Constructor
Ctxt::Ctxt(ZeroCtxtLike_type, const Ctxt& ctxt):
  context(ctxt.getPubKey().getContext()), pubKey(ctxt.getPubKey()), 
  ptxtSpace(ctxt.getPtxtSpace()),
  noiseVar(to_xdouble(0.0))
{
  // same body as previous constructor
  if (ptxtSpace<=0) ptxtSpace = pubKey.getPtxtSpace();
  else assert (GCD(ptxtSpace, pubKey.getPtxtSpace()) > 1); // sanity check
  primeSet=context.ctxtPrimes;
}
开发者ID:Kverma517,项目名称:HElib,代码行数:11,代码来源:Ctxt.cpp

示例2: tmp

// This procedure assumes that k*(2^e +1) > deg(poly) > k*(2^e -1),
// and that babyStep contains >= k + (deg(poly) mod k) powers
static void
degPowerOfTwo(Ctxt& ret, const ZZX& poly, long k,
	      DynamicCtxtPowers& babyStep, DynamicCtxtPowers& giantStep)
{
  if (deg(poly)<=babyStep.size()) { // Edge condition, use simple eval
    simplePolyEval(ret, poly, babyStep);
    return;
  }
  long n = deg(poly)/k;        // We assume n=2^e or n=2^e -1
  n = 1L << NextPowerOfTwo(n); // round up to n=2^e
  ZZX r = trunc(poly, (n-1)*k);      // degree <= k(2^e-1)-1
  ZZX q = RightShift(poly, (n-1)*k); // 0 < degree < 2k
  SetCoeff(r, (n-1)*k);              // monic, degree == k(2^e-1)
  q -= 1;

  PatersonStockmeyer(ret, r, k, n/2, 0,	babyStep, giantStep);

  Ctxt tmp(ret.getPubKey(), ret.getPtxtSpace());
  simplePolyEval(tmp, q, babyStep); // evaluate q

  // multiply by X^{k(n-1)} with minimum depth
  for (long i=1; i<n; i*=2) {  
    tmp.multiplyBy(giantStep.getPower(i));
  }
  ret += tmp;
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:28,代码来源:polyEval.cpp

示例3: extractDigits

void extractDigits(vector<Ctxt>& digits, const Ctxt& c, long r)
{
  const FHEcontext& context = c.getContext();
  long rr = c.effectiveR();
  if (r<=0 || r>rr) r = rr; // how many digits to extract

  long p = context.zMStar.getP();

  ZZX x2p;
  if (p>3) { 
    buildDigitPolynomial(x2p, p, r);
  }

  Ctxt tmp(c.getPubKey(), c.getPtxtSpace());
  digits.resize(r, tmp);      // allocate space

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
  for (long i=0; i<r; i++) {
    tmp = c;
    for (long j=0; j<i; j++) {

      if (p==2) digits[j].square();
      else if (p==3) digits[j].cube();
      else polyEval(digits[j], x2p, digits[j]); 
      // "in spirit" digits[j] = digits[j]^p

#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld", digits[j].bitCapacity());
#endif

      tmp -= digits[j];
      tmp.divideByP();
    }
    digits[i] = tmp; // needed in the next round

#ifdef DEBUG_PRINTOUT
    if (dbgKey) {
       double ratio = 
          log(embeddingLargestCoeff(digits[i], *dbgKey)/digits[i].getNoiseBound())/log(2.0);
       fprintf(stderr, "%5ld [%f]", digits[i].bitCapacity(), ratio);
       if (ratio > 0) fprintf(stderr, " BAD-BOUND");
       fprintf(stderr, "\n");
    }
    else {
       fprintf(stderr, "%5ld\n", digits[i].bitCapacity());
    }
#endif
  }

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
}
开发者ID:bbreck3,项目名称:HElib,代码行数:55,代码来源:extractDigits.cpp

示例4: applyToCtxt

// Apply a permutation network to a ciphertext
// FIXME: Do we need to also give an EncryptedArray object as paramter?
void PermNetwork::applyToCtxt(Ctxt& c) const
{
  const PAlgebra& al = c.getContext().zMStar;
  EncryptedArray ea(c.getContext());
  // Use G(X)=X for this ea object, this works since we only have 0/1 entries

  // Apply the layers, one at a time
  for (long i=0; i<layers.length(); i++) {
    const PermNetLayer& lyr = layers[i];
    if (lyr.isID) continue; // this layer is the identity permutation

    // This layer is shifted via powers of g^e mod m
    long g2e = PowerMod(al.ZmStarGen(lyr.genIdx), lyr.e, al.getM());

    Vec<long> unused = lyr.shifts; // copy to a new vector
    vector<long> mask(lyr.shifts.length());  // buffer to hold masks
    Ctxt sum(c.getPubKey(), c.getPtxtSpace()); // an empty ciphertext

    long shamt = 0;
    bool frst = true;
    while (true) {
      pair<long,bool> ret=makeMask(mask, unused, shamt); // compute mask
      if (ret.second) { // non-empty mask
	Ctxt tmp = c;
	ZZX maskPoly;
	ea.encode(maskPoly, mask);    // encode mask as polynomial
	tmp.multByConstant(maskPoly); // multiply by mask
	if (shamt!=0) // rotate if the shift amount is nonzero
	  tmp.smartAutomorph(PowerMod(g2e, shamt, al.getM()));
	if (frst) {
	  sum = tmp;
	  frst = false;
	}
	else
	  sum += tmp;
      }
      if (ret.first >= 0)
	shamt = unused[ret.first]; // next shift amount to use

      else break; // unused is all-zero, done with this layer
    }
    c = sum; // update the cipehrtext c before the next layer
  }
}
开发者ID:2080,项目名称:HElib,代码行数:46,代码来源:PermNetwork.cpp

示例5: apply

  static void apply(const EncryptedArrayDerived<type>& ea, 
    Ctxt& ctxt, const PlaintextMatrixBaseInterface& mat) 
  {
    assert(&ea == &mat.getEA().getDerived(type()));
    assert(&ea.getContext() == &ctxt.getContext());

    RBak bak; bak.save(); ea.getTab().restoreContext();

    // Get the derived type
    const PlaintextMatrixInterface<type>& mat1 = 
      dynamic_cast< const PlaintextMatrixInterface<type>& >( mat );

    ctxt.cleanUp(); // not sure, but this may be a good idea

    Ctxt res(ctxt.getPubKey(), ctxt.getPtxtSpace()); // fresh encryption of zero

    long nslots = ea.size();
    long d = ea.getDegree();

    RX entry;
    vector<RX> diag;
    diag.resize(nslots);

    // Process the diagonals one at a time
    for (long i = 0; i < nslots; i++) {  // process diagonal i
      bool zDiag = true; // is this a zero diagonal?
      long nzLast = -1;  // index of last non-zero entry on this diagonal

      // Compute constants for each entry on this diagonal
      for (long j = 0; j < nslots; j++) { // process entry j
        bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j); // callback
        assert(zEntry || deg(entry) < d);

        if (!zEntry && IsZero(entry)) zEntry = true; // check for zero

        if (!zEntry) { // non-zero diagonal entry

          zDiag = false; // diagonal is non-zero

          // clear entries between last nonzero entry and this one
          for (long jj = nzLast+1; jj < j; jj++) clear(diag[jj]);
          nzLast = j;

          diag[j] = entry;
        }
      }
      
      if (zDiag) continue; // zero diagonal, continue

      // clear trailing zero entries
      for (long jj = nzLast+1; jj < nslots; jj++) clear(diag[jj]);

      // Now we have the constants for all the diagonal entries, encode the
      // diagonal as a single polynomial with these constants in the slots
      ZZX cpoly;
      ea.encode(cpoly, diag);

      // rotate by i, multiply by the polynomial, then add to the result
      Ctxt shCtxt = ctxt;
      ea.rotate(shCtxt, i); // rotate by i
      shCtxt.multByConstant(cpoly);
      res += shCtxt;
    }
    ctxt = res;
  }
开发者ID:Kverma517,项目名称:HElib,代码行数:65,代码来源:matrix.cpp

示例6: extendExtractDigits

void extendExtractDigits(vector<Ctxt>& digits, const Ctxt& c, long r, long e)
{
  const FHEcontext& context = c.getContext();

  long p = context.zMStar.getP();
  ZZX x2p;
  if (p>3) { 
    buildDigitPolynomial(x2p, p, r);
  }

  // we should pre-compute this table
  // for i = 0..r-1, entry i is G_{e+r-i} in Chen and Han
  Vec<ZZX> G;
  G.SetLength(r);
  for (long i: range(r)) {
    compute_magic_poly(G[i], p, e+r-i);
  }

  vector<Ctxt> digits0;

  Ctxt tmp(c.getPubKey(), c.getPtxtSpace());

  digits.resize(r, tmp);      // allocate space
  digits0.resize(r, tmp);

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
  for (long i: range(r)) {
    tmp = c;
    for (long j: range(i)) {
      if (digits[j].capacity() >= digits0[j].capacity()) {
         // optimization: digits[j] is better than digits0[j],
         // so just use it

         tmp -= digits[j];
#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld*", digits[j].bitCapacity());
#endif
      }
      else {
	if (p==2) digits0[j].square();
	else if (p==3) digits0[j].cube();
	else polyEval(digits0[j], x2p, digits0[j]); // "in spirit" digits0[j] = digits0[j]^p

	tmp -= digits0[j];
#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld ", digits0[j].bitCapacity());
#endif
      }
      tmp.divideByP();
    }
    digits0[i] = tmp; // needed in the next round
    polyEval(digits[i], G[i], tmp);

#ifdef DEBUG_PRINTOUT
    if (dbgKey) {
      double ratio = 
        log(embeddingLargestCoeff(digits[i], *dbgKey)/digits[i].getNoiseBound())/log(2.0);
      fprintf(stderr, "%5ld  --- %5ld", digits0[i].bitCapacity(), digits[i].bitCapacity());
      fprintf(stderr, " [%f]", ratio);
      if (ratio > 0) fprintf(stderr, " BAD-BOUND");
      fprintf(stderr, "\n");
    }
    else {
      fprintf(stderr, "%5ld  --- %5ld\n", digits0[i].bitCapacity(), digits[i].bitCapacity());
    }
#endif
  }
}
开发者ID:bbreck3,项目名称:HElib,代码行数:70,代码来源:extractDigits.cpp

示例7: res

void EncryptedArrayDerived<type>::mat_mul(Ctxt& ctxt, const PlaintextBlockMatrixBaseInterface& mat) const
{
  FHE_TIMER_START;
  assert(this == &mat.getEA().getDerived(type()));
  assert(&context == &ctxt.getContext());

  RBak bak; bak.save(); tab.restoreContext();

  const PlaintextBlockMatrixInterface<type>& mat1 = 
    dynamic_cast< const PlaintextBlockMatrixInterface<type>& >( mat );

  ctxt.cleanUp(); // not sure, but this may be a good idea

  Ctxt res(ctxt.getPubKey(), ctxt.getPtxtSpace());
  // a new ciphertext, encrypting zero
  

  long nslots = size();
  long d = getDegree();

  mat_R entry;
  entry.SetDims(d, d);

  vector<RX> entry1;
  entry1.resize(d);
  
  vector< vector<RX> > diag;
  diag.resize(nslots);
  for (long j = 0; j < nslots; j++) diag[j].resize(d);

  for (long i = 0; i < nslots; i++) {
    // process diagonal i


    bool zDiag = true;
    long nzLast = -1;

    for (long j = 0; j < nslots; j++) {
      bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j);
      assert(zEntry || (entry.NumRows() == d && entry.NumCols() == d));
        // get(...) returns true if the entry is empty, false otherwise

      if (!zEntry && IsZero(entry)) zEntry=true; // zero is an empty entry too

      if (!zEntry) {    // non-empty entry

        zDiag = false;  // mark diagonal as non-empty

        // clear entries between last nonzero entry and this one

        for (long jj = nzLast+1; jj < j; jj++) {
          for (long k = 0; k < d; k++)
            clear(diag[jj][k]);
        }

        nzLast = j;

        // recode entry as a vector of polynomials
        for (long k = 0; k < d; k++) conv(entry1[k], entry[k]);

        // compute the lin poly coeffs
        buildLinPolyCoeffs(diag[j], entry1);
      }
    }

    if (zDiag) continue; // zero diagonal, continue

    // clear trailing zero entries    
    for (long jj = nzLast+1; jj < nslots; jj++) {
      for (long k = 0; k < d; k++)
        clear(diag[jj][k]);
    }

    // now diag[j] contains the lin poly coeffs

    Ctxt shCtxt = ctxt;
    rotate(shCtxt, i); 

    // apply the linearlized polynomial
    for (long k = 0; k < d; k++) {

      // compute the constant
      bool zConst = true;
      vector<RX> cvec;
      cvec.resize(nslots);
      for (long j = 0; j < nslots; j++) {
        cvec[j] = diag[j][k];
        if (!IsZero(cvec[j])) zConst = false;
      }

      if (zConst) continue;

      ZZX cpoly;
      encode(cpoly, cvec);
      // FIXME: record the encoded polynomial for future use

      Ctxt shCtxt1 = shCtxt;
      shCtxt1.frobeniusAutomorph(k);
      shCtxt1.multByConstant(cpoly);
      res += shCtxt1;
//.........这里部分代码省略.........
开发者ID:hsibyani,项目名称:HElib,代码行数:101,代码来源:EncryptedArray.cpp

示例8: tmp

void EncryptedArrayDerived<type>::shift(Ctxt& ctxt, long k) const
{
  FHE_TIMER_START;


  const PAlgebra& al = context.zMStar;

  const vector< vector< RX > >& maskTable = tab.getMaskTable();

  RBak bak; bak.save(); tab.restoreContext();

  assert(&context == &ctxt.getContext());

  // Simple case: just one generator
  if (al.numOfGens()==1) {
    shift1D(ctxt, 0, k);
    return;
  }

  long nSlots = al.getNSlots();

  // Shifting by more than the number of slots gives an all-zero cipehrtext
  if (k <= -nSlots || k >= nSlots) {
    ctxt.multByConstant(to_ZZX(0));
    return;
  }

  // Make sure that amt is in [1,nslots-1]
  long amt = k % nSlots;
  if (amt == 0) return;
  if (amt < 0) amt += nSlots;

  // rotate the ciphertext, one dimension at a time
  long i = al.numOfGens()-1;
  long v = al.coordinate(i, amt);
  RX mask = maskTable[i][v];
  Ctxt tmp(ctxt.getPubKey());
  const RXModulus& PhimXmod = tab.getPhimXMod();

  rotate1D(ctxt, i, v);
  for (i--; i >= 0; i--) {
    v = al.coordinate(i, amt);

    DoubleCRT m1(conv<ZZX>(mask), context, ctxt.getPrimeSet());
    tmp = ctxt;
    tmp.multByConstant(m1); // only the slots in which mask=1
    ctxt -= tmp;            // only the slots in which mask=0
    if (i>0) {
      rotate1D(ctxt, i, v+1);
      rotate1D(tmp, i, v); 
      ctxt += tmp;                    // combine the two parts

      mask = ((mask * (maskTable[i][v] - maskTable[i][v+1])) % PhimXmod)
             + maskTable[i][v+1];  // update the mask before next iteration
    }
    else { // i == 0
      if (k < 0) v -= al.OrderOf(0);
      shift1D(tmp, 0, v);
      shift1D(ctxt, 0, v+1);
      ctxt += tmp;
    } 
  }
  FHE_TIMER_STOP;
}
开发者ID:hsibyani,项目名称:HElib,代码行数:64,代码来源:EncryptedArray.cpp


注:本文中的Ctxt::getPubKey方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。