当前位置: 首页>>代码示例>>C++>>正文


C++ Ctxt::getPtxtSpace方法代码示例

本文整理汇总了C++中Ctxt::getPtxtSpace方法的典型用法代码示例。如果您正苦于以下问题:C++ Ctxt::getPtxtSpace方法的具体用法?C++ Ctxt::getPtxtSpace怎么用?C++ Ctxt::getPtxtSpace使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Ctxt的用法示例。


在下文中一共展示了Ctxt::getPtxtSpace方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: mapTo01

NTL_CLIENT
#include "FHE.h"
#include "timing.h"
#include "EncryptedArray.h"

#include <cstdio>

// Map all non-zero slots to 1, leaving zero slots as zero.
// Assumes that r=1, and that all the slot contain elements from GF(p^d).
//
// We compute x^{p^d-1} = x^{(1+p+...+p^{d-1})*(p-1)} by setting y=x^{p-1}
// and then outputting y * y^p * ... * y^{p^{d-1}}, with exponentiation to
// powers of p done via Frobenius.

// FIXME: the computation of the "norm" y * y^p * ... * y^{p^{d-1}}
// can be done using O(log d) automorphisms, rather than O(d).

void mapTo01(const EncryptedArray& ea, Ctxt& ctxt)
{
  long p = ctxt.getPtxtSpace();
  if (p != ea.getPAlgebra().getP()) // ptxt space is p^r for r>1
    throw helib::LogicError("mapTo01 not implemented for r>1");

  if (p>2)
    ctxt.power(p-1); // set y = x^{p-1}

  long d = ea.getDegree();
  if (d>1) { // compute the product of the d automorphisms
    std::vector<Ctxt> v(d, ctxt);
    for (long i=1; i<d; i++)
      v[i].frobeniusAutomorph(i);
    totalProduct(ctxt, v);
  }
}
开发者ID:shaih,项目名称:HElib,代码行数:34,代码来源:eqtesting.cpp

示例2: tmp

// This procedure assumes that k*(2^e +1) > deg(poly) > k*(2^e -1),
// and that babyStep contains >= k + (deg(poly) mod k) powers
static void
degPowerOfTwo(Ctxt& ret, const ZZX& poly, long k,
	      DynamicCtxtPowers& babyStep, DynamicCtxtPowers& giantStep)
{
  if (deg(poly)<=babyStep.size()) { // Edge condition, use simple eval
    simplePolyEval(ret, poly, babyStep);
    return;
  }
  long n = deg(poly)/k;        // We assume n=2^e or n=2^e -1
  n = 1L << NextPowerOfTwo(n); // round up to n=2^e
  ZZX r = trunc(poly, (n-1)*k);      // degree <= k(2^e-1)-1
  ZZX q = RightShift(poly, (n-1)*k); // 0 < degree < 2k
  SetCoeff(r, (n-1)*k);              // monic, degree == k(2^e-1)
  q -= 1;

  PatersonStockmeyer(ret, r, k, n/2, 0,	babyStep, giantStep);

  Ctxt tmp(ret.getPubKey(), ret.getPtxtSpace());
  simplePolyEval(tmp, q, babyStep); // evaluate q

  // multiply by X^{k(n-1)} with minimum depth
  for (long i=1; i<n; i*=2) {  
    tmp.multiplyBy(giantStep.getPower(i));
  }
  ret += tmp;
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:28,代码来源:polyEval.cpp

示例3: assert

// Constructor
Ctxt::Ctxt(ZeroCtxtLike_type, const Ctxt& ctxt):
  context(ctxt.getPubKey().getContext()), pubKey(ctxt.getPubKey()), 
  ptxtSpace(ctxt.getPtxtSpace()),
  noiseVar(to_xdouble(0.0))
{
  // same body as previous constructor
  if (ptxtSpace<=0) ptxtSpace = pubKey.getPtxtSpace();
  else assert (GCD(ptxtSpace, pubKey.getPtxtSpace()) > 1); // sanity check
  primeSet=context.ctxtPrimes;
}
开发者ID:Kverma517,项目名称:HElib,代码行数:11,代码来源:Ctxt.cpp

示例4: decryptAndPrint

void decryptAndPrint(ostream& s, const Ctxt& ctxt, const FHESecKey& sk,
		     const EncryptedArray& ea, long flags)
{
  const FHEcontext& context = ctxt.getContext();
  xdouble noiseEst = sqrt(ctxt.getNoiseVar());
  xdouble modulus = xexp(context.logOfProduct(ctxt.getPrimeSet()));
  vector<ZZX> ptxt;
  ZZX p, pp;
  sk.Decrypt(p, ctxt, pp);

  s << "plaintext space mod "<<ctxt.getPtxtSpace()
       << ", level="<<ctxt.findBaseLevel()
       << ", \n           |noise|=q*" << (coeffsL2Norm(pp)/modulus)
       << ", |noiseEst|=q*" << (noiseEst/modulus)
       <<endl;

  if (flags & FLAG_PRINT_ZZX) {
    s << "   before mod-p reduction=";
    printZZX(s,pp) <<endl;
  }
  if (flags & FLAG_PRINT_POLY) {
    s << "   after mod-p reduction=";
    printZZX(s,p) <<endl;
  }
  if (flags & FLAG_PRINT_VEC) {
    ea.decode(ptxt, p);
    if (ea.getAlMod().getTag() == PA_zz_p_tag
	&& ctxt.getPtxtSpace() != ea.getAlMod().getPPowR()) {
      long g = GCD(ctxt.getPtxtSpace(), ea.getAlMod().getPPowR());
      for (long i=0; i<ea.size(); i++)
	PolyRed(ptxt[i], g, true);
    }
    s << "   decoded to ";
    if (deg(p) < 40) // just pring the whole thing
      s << ptxt << endl;
    else if (ptxt.size()==1) // a single slot
      printZZX(s, ptxt[0]) <<endl;
    else { // print first and last slots
      printZZX(s, ptxt[0],20) << "--";
      printZZX(s, ptxt[ptxt.size()-1], 20) <<endl;      
    }
  }
}
开发者ID:Kverma517,项目名称:HElib,代码行数:43,代码来源:debugging.cpp

示例5: extractDigits

void extractDigits(vector<Ctxt>& digits, const Ctxt& c, long r)
{
  const FHEcontext& context = c.getContext();
  long rr = c.effectiveR();
  if (r<=0 || r>rr) r = rr; // how many digits to extract

  long p = context.zMStar.getP();

  ZZX x2p;
  if (p>3) { 
    buildDigitPolynomial(x2p, p, r);
  }

  Ctxt tmp(c.getPubKey(), c.getPtxtSpace());
  digits.resize(r, tmp);      // allocate space

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
  for (long i=0; i<r; i++) {
    tmp = c;
    for (long j=0; j<i; j++) {

      if (p==2) digits[j].square();
      else if (p==3) digits[j].cube();
      else polyEval(digits[j], x2p, digits[j]); 
      // "in spirit" digits[j] = digits[j]^p

#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld", digits[j].bitCapacity());
#endif

      tmp -= digits[j];
      tmp.divideByP();
    }
    digits[i] = tmp; // needed in the next round

#ifdef DEBUG_PRINTOUT
    if (dbgKey) {
       double ratio = 
          log(embeddingLargestCoeff(digits[i], *dbgKey)/digits[i].getNoiseBound())/log(2.0);
       fprintf(stderr, "%5ld [%f]", digits[i].bitCapacity(), ratio);
       if (ratio > 0) fprintf(stderr, " BAD-BOUND");
       fprintf(stderr, "\n");
    }
    else {
       fprintf(stderr, "%5ld\n", digits[i].bitCapacity());
    }
#endif
  }

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
}
开发者ID:bbreck3,项目名称:HElib,代码行数:55,代码来源:extractDigits.cpp

示例6: checkCiphertext

void checkCiphertext(const Ctxt& ctxt, const ZZX& ptxt, const FHESecKey& sk)
{
  const FHEcontext& context = ctxt.getContext();
  /*
  IndexSet base = baseSetOf(ctxt);
  double addedNoise = log(ctxt.modSwitchAddedNoiseVar());
  Ctxt tmp = ctxt;
  tmp.modDownToSet(base);
  double totalNoise = log(tmp.getNoiseVar());
  cout << "   @@@ log(added-noise)="<<addedNoise
       << ", log(total-noise)="<<totalNoise<<endl;
  */
  cout << " ln(q)="<< context.logOfProduct(ctxt.getPrimeSet())
       << ", ln(nVar)/2="<< log(ctxt.getNoiseVar())/2;
  //       << ", ln(nMag)="<< log(ctxt.getNoiseMag());

  ZZX res;
  //  sk.Decrypt(res, ctxt);
  ZZX f;
  sk.Decrypt(res, ctxt, f);
  cout << ", ln(mxPtxtCoef)=" << log(largestCoeff(f));

  // ensure we reduce the same way on both
  PolyRed((ZZX&)res,res,ctxt.getPtxtSpace(),true);
  PolyRed((ZZX&)ptxt,ptxt,ctxt.getPtxtSpace(),true);
  if (res != ptxt) {
    cout << ", failed\n";
    for (long i=0; i<=deg(ptxt); i++) if (coeff(res,i)!=coeff(ptxt,i)) {
	cout << "first mismatch in coeff "<<i<<": "
	     << coeff(res,i)<<"!="<<coeff(ptxt,i)<<"\n";
	break;
      }

    cout << "Timing information:\n";
    printAllTimers();
    cout << "\n";
    exit(0);
  }
  else cout << ", succeeded\n";
}
开发者ID:ElenaKirshanova,项目名称:HElib,代码行数:40,代码来源:old-Test_FHE.cpp

示例7: applyToCtxt

// Apply a permutation network to a ciphertext
// FIXME: Do we need to also give an EncryptedArray object as paramter?
void PermNetwork::applyToCtxt(Ctxt& c) const
{
  const PAlgebra& al = c.getContext().zMStar;
  EncryptedArray ea(c.getContext());
  // Use G(X)=X for this ea object, this works since we only have 0/1 entries

  // Apply the layers, one at a time
  for (long i=0; i<layers.length(); i++) {
    const PermNetLayer& lyr = layers[i];
    if (lyr.isID) continue; // this layer is the identity permutation

    // This layer is shifted via powers of g^e mod m
    long g2e = PowerMod(al.ZmStarGen(lyr.genIdx), lyr.e, al.getM());

    Vec<long> unused = lyr.shifts; // copy to a new vector
    vector<long> mask(lyr.shifts.length());  // buffer to hold masks
    Ctxt sum(c.getPubKey(), c.getPtxtSpace()); // an empty ciphertext

    long shamt = 0;
    bool frst = true;
    while (true) {
      pair<long,bool> ret=makeMask(mask, unused, shamt); // compute mask
      if (ret.second) { // non-empty mask
	Ctxt tmp = c;
	ZZX maskPoly;
	ea.encode(maskPoly, mask);    // encode mask as polynomial
	tmp.multByConstant(maskPoly); // multiply by mask
	if (shamt!=0) // rotate if the shift amount is nonzero
	  tmp.smartAutomorph(PowerMod(g2e, shamt, al.getM()));
	if (frst) {
	  sum = tmp;
	  frst = false;
	}
	else
	  sum += tmp;
      }
      if (ret.first >= 0)
	shamt = unused[ret.first]; // next shift amount to use

      else break; // unused is all-zero, done with this layer
    }
    c = sum; // update the cipehrtext c before the next layer
  }
}
开发者ID:2080,项目名称:HElib,代码行数:46,代码来源:PermNetwork.cpp

示例8: fastPower

// computes ctxt^{2^d-1} using a method that takes
// O(log d) automorphisms and multiplications
void fastPower(Ctxt& ctxt, long d) 
{
  assert(ctxt.getPtxtSpace()==2);
  if (d <= 1) return;

  Ctxt orig = ctxt;

  long k = NumBits(d);
  long e = 1;

  for (long i = k-2; i >= 0; i--) {
    Ctxt tmp1 = ctxt;
    tmp1.smartAutomorph(1L << e);
    ctxt.multiplyBy(tmp1);
    e = 2*e;

    if (bit(d, i)) {
      ctxt.smartAutomorph(2);
      ctxt.multiplyBy(orig);
      e += 1;
    }
  }
}
开发者ID:bbreck3,项目名称:HElib,代码行数:25,代码来源:eqtesting.cpp

示例9: apply

  static void apply(const EncryptedArrayDerived<type>& ea, 
    Ctxt& ctxt, const PlaintextMatrixBaseInterface& mat) 
  {
    assert(&ea == &mat.getEA().getDerived(type()));
    assert(&ea.getContext() == &ctxt.getContext());

    RBak bak; bak.save(); ea.getTab().restoreContext();

    // Get the derived type
    const PlaintextMatrixInterface<type>& mat1 = 
      dynamic_cast< const PlaintextMatrixInterface<type>& >( mat );

    ctxt.cleanUp(); // not sure, but this may be a good idea

    Ctxt res(ctxt.getPubKey(), ctxt.getPtxtSpace()); // fresh encryption of zero

    long nslots = ea.size();
    long d = ea.getDegree();

    RX entry;
    vector<RX> diag;
    diag.resize(nslots);

    // Process the diagonals one at a time
    for (long i = 0; i < nslots; i++) {  // process diagonal i
      bool zDiag = true; // is this a zero diagonal?
      long nzLast = -1;  // index of last non-zero entry on this diagonal

      // Compute constants for each entry on this diagonal
      for (long j = 0; j < nslots; j++) { // process entry j
        bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j); // callback
        assert(zEntry || deg(entry) < d);

        if (!zEntry && IsZero(entry)) zEntry = true; // check for zero

        if (!zEntry) { // non-zero diagonal entry

          zDiag = false; // diagonal is non-zero

          // clear entries between last nonzero entry and this one
          for (long jj = nzLast+1; jj < j; jj++) clear(diag[jj]);
          nzLast = j;

          diag[j] = entry;
        }
      }
      
      if (zDiag) continue; // zero diagonal, continue

      // clear trailing zero entries
      for (long jj = nzLast+1; jj < nslots; jj++) clear(diag[jj]);

      // Now we have the constants for all the diagonal entries, encode the
      // diagonal as a single polynomial with these constants in the slots
      ZZX cpoly;
      ea.encode(cpoly, diag);

      // rotate by i, multiply by the polynomial, then add to the result
      Ctxt shCtxt = ctxt;
      ea.rotate(shCtxt, i); // rotate by i
      shCtxt.multByConstant(cpoly);
      res += shCtxt;
    }
    ctxt = res;
  }
开发者ID:Kverma517,项目名称:HElib,代码行数:65,代码来源:matrix.cpp

示例10: extendExtractDigits

void extendExtractDigits(vector<Ctxt>& digits, const Ctxt& c, long r, long e)
{
  const FHEcontext& context = c.getContext();

  long p = context.zMStar.getP();
  ZZX x2p;
  if (p>3) { 
    buildDigitPolynomial(x2p, p, r);
  }

  // we should pre-compute this table
  // for i = 0..r-1, entry i is G_{e+r-i} in Chen and Han
  Vec<ZZX> G;
  G.SetLength(r);
  for (long i: range(r)) {
    compute_magic_poly(G[i], p, e+r-i);
  }

  vector<Ctxt> digits0;

  Ctxt tmp(c.getPubKey(), c.getPtxtSpace());

  digits.resize(r, tmp);      // allocate space
  digits0.resize(r, tmp);

#ifdef DEBUG_PRINTOUT
  fprintf(stderr, "***\n");
#endif
  for (long i: range(r)) {
    tmp = c;
    for (long j: range(i)) {
      if (digits[j].capacity() >= digits0[j].capacity()) {
         // optimization: digits[j] is better than digits0[j],
         // so just use it

         tmp -= digits[j];
#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld*", digits[j].bitCapacity());
#endif
      }
      else {
	if (p==2) digits0[j].square();
	else if (p==3) digits0[j].cube();
	else polyEval(digits0[j], x2p, digits0[j]); // "in spirit" digits0[j] = digits0[j]^p

	tmp -= digits0[j];
#ifdef DEBUG_PRINTOUT
      fprintf(stderr, "%5ld ", digits0[j].bitCapacity());
#endif
      }
      tmp.divideByP();
    }
    digits0[i] = tmp; // needed in the next round
    polyEval(digits[i], G[i], tmp);

#ifdef DEBUG_PRINTOUT
    if (dbgKey) {
      double ratio = 
        log(embeddingLargestCoeff(digits[i], *dbgKey)/digits[i].getNoiseBound())/log(2.0);
      fprintf(stderr, "%5ld  --- %5ld", digits0[i].bitCapacity(), digits[i].bitCapacity());
      fprintf(stderr, " [%f]", ratio);
      if (ratio > 0) fprintf(stderr, " BAD-BOUND");
      fprintf(stderr, "\n");
    }
    else {
      fprintf(stderr, "%5ld  --- %5ld\n", digits0[i].bitCapacity(), digits[i].bitCapacity());
    }
#endif
  }
}
开发者ID:bbreck3,项目名称:HElib,代码行数:70,代码来源:extractDigits.cpp

示例11: reCrypt

// bootstrap a ciphertext to reduce noise
void FHEPubKey::reCrypt(Ctxt &ctxt)
{
  FHE_TIMER_START;

  // Some sanity checks for dummy ciphertext
  long ptxtSpace = ctxt.getPtxtSpace();
  if (ctxt.isEmpty()) return;
  if (ctxt.parts.size()==1 && ctxt.parts[0].skHandle.isOne()) {
    // Dummy encryption, just ensure that it is reduced mod p
    ZZX poly = to_ZZX(ctxt.parts[0]);
    for (long i=0; i<poly.rep.length(); i++)
      poly[i] = to_ZZ( rem(poly[i],ptxtSpace) );
    poly.normalize();
    ctxt.DummyEncrypt(poly);
    return;
  }

  assert(recryptKeyID>=0); // check that we have bootstrapping data

  long p = getContext().zMStar.getP();
  long r = getContext().alMod.getR();
  long p2r = getContext().alMod.getPPowR();

  // the bootstrapping key is encrypted relative to plaintext space p^{e-e'+r}.
  long e = getContext().rcData.e;
  long ePrime = getContext().rcData.ePrime;
  long p2ePrime = power_long(p,ePrime);
  long q = power_long(p,e)+1;
  assert(e>=r);

#ifdef DEBUG_PRINTOUT
  cerr << "reCrypt: p="<<p<<", r="<<r<<", e="<<e<<" ePrime="<<ePrime
       << ", q="<<q<<endl;
#endif

  // can only bootstrap ciphertext with plaintext-space dividing p^r
  assert(p2r % ptxtSpace == 0);

  FHE_NTIMER_START(preProcess);

  // Make sure that this ciphertxt is in canonical form
  if (!ctxt.inCanonicalForm()) ctxt.reLinearize();

  // Mod-switch down if needed
  IndexSet s = ctxt.getPrimeSet() / getContext().specialPrimes; // set minus
  if (s.card()>2) { // leave only bottom two primes
    long frst = s.first();
    long scnd = s.next(frst);
    IndexSet s2(frst,scnd);
    s.retain(s2); // retain only first two primes
  }
  ctxt.modDownToSet(s);

  // key-switch to the bootstrapping key
  ctxt.reLinearize(recryptKeyID);

  // "raw mod-switch" to the bootstrapping mosulus q=p^e+1.
  vector<ZZX> zzParts; // the mod-switched parts, in ZZX format
  double noise = ctxt.rawModSwitch(zzParts, q);
  noise = sqrt(noise);

  // Add multiples of p2r and q to make the zzParts divisible by p^{e'}
  long maxU=0;
  for (long i=0; i<(long)zzParts.size(); i++) {
    // make divisible by p^{e'}
    long newMax = makeDivisible(zzParts[i].rep, p2ePrime, p2r, q,
				getContext().rcData.alpha);
    zzParts[i].normalize();   // normalize after working directly on the rep
    if (maxU < newMax)  maxU = newMax;
  }

  // Check that the estimated noise is still low
  if (noise + maxU*p2r*(skHwts[recryptKeyID]+1) > q/2) 
    cerr << " * noise/q after makeDivisible = "
	 << ((noise + maxU*p2r*(skHwts[recryptKeyID]+1))/q) << endl;

  for (long i=0; i<(long)zzParts.size(); i++)
    zzParts[i] /= p2ePrime;   // divide by p^{e'}

  // Multiply the post-processed cipehrtext by the encrypted sKey
#ifdef DEBUG_PRINTOUT
  cerr << "+ Before recryption ";
  decryptAndPrint(cerr, recryptEkey, *dbgKey, *dbgEa, printFlag);
#endif

  double p0size = to_double(coeffsL2Norm(zzParts[0]));
  double p1size = to_double(coeffsL2Norm(zzParts[1]));
  ctxt = recryptEkey;
  ctxt.multByConstant(zzParts[1], p1size*p1size);
  ctxt.addConstant(zzParts[0], p0size*p0size);

#ifdef DEBUG_PRINTOUT
  cerr << "+ Before linearTrans1 ";
  decryptAndPrint(cerr, ctxt, *dbgKey, *dbgEa, printFlag);
#endif
  FHE_NTIMER_STOP(preProcess);

  // Move the powerful-basis coefficients to the plaintext slots
  FHE_NTIMER_START(LinearTransform1);
//.........这里部分代码省略.........
开发者ID:fionser,项目名称:HElib,代码行数:101,代码来源:recryption.cpp

示例12: polyEval

// Main entry point: Evaluate a cleartext polynomial on an encrypted input
void polyEval(Ctxt& ret, ZZX poly, const Ctxt& x, long k)
     // Note: poly is passed by value, so caller keeps the original
{
  if (deg(poly)<=2) {  // nothing to optimize here
    if (deg(poly)<1) { // A constant
      ret.clear();
      ret.addConstant(coeff(poly, 0));
    } else {           // A linear or quadratic polynomial
      DynamicCtxtPowers babyStep(x, deg(poly));
      simplePolyEval(ret, poly, babyStep);
    }
    return;
  }

  // How many baby steps: set k~sqrt(n/2), rounded up/down to a power of two

  // FIXME: There may be some room for optimization here: it may be possible
  // to choose k as something other than a power of two and still maintain
  // optimal depth, in principle we can try all possible values of k between
  // two consecutive powers of two and choose the one that gives the least
  // number of multiplies, conditioned on minimum depth.

  if (k<=0) {
    long kk = (long) sqrt(deg(poly)/2.0);
    k = 1L << NextPowerOfTwo(kk);

    // heuristic: if k>>kk then use a smaler power of two
    if ((k==16 && deg(poly)>167) || (k>16 && k>(1.44*kk)))
      k /= 2;
  }
#ifdef DEBUG_PRINTOUT
  cerr << "  k="<<k;
#endif

  long n = divc(deg(poly),k);      // n = ceil(deg(p)/k), deg(p) >= k*n
  DynamicCtxtPowers babyStep(x, k);
  const Ctxt& x2k = babyStep.getPower(k);

  // Special case when deg(p)>k*(2^e -1)
  if (n==(1L << NextPowerOfTwo(n))) { // n is a power of two
    DynamicCtxtPowers giantStep(x2k, n/2);
    degPowerOfTwo(ret, poly, k, babyStep, giantStep);
    return;
  }

  // If n is not a power of two, ensure that poly is monic and that
  // its degree is divisible by k, then call the recursive procedure

  const ZZ p = to_ZZ(x.getPtxtSpace());
  ZZ top = LeadCoeff(poly);
  ZZ topInv; // the inverse mod p of the top coefficient of poly (if any)
  bool divisible = (n*k == deg(poly)); // is the degree divisible by k?
  long nonInvertibe = InvModStatus(topInv, top, p);
       // 0 if invertible, 1 if not

  // FIXME: There may be some room for optimization below: instead of
  // adding a term X^{n*k} we can add X^{n'*k} for some n'>n, so long
  // as n' is smaller than the next power of two. We could save a few
  // multiplications since giantStep[n'] may be easier to compute than
  // giantStep[n] when n' has fewer 1's than n in its binary expansion.

  ZZ extra = ZZ::zero();    // extra!=0 denotes an added term extra*X^{n*k}
  if (!divisible || nonInvertibe) {  // need to add a term
    top = to_ZZ(1);  // new top coefficient is one
    topInv = top;    // also the new inverse is one
    // set extra = 1 - current-coeff-of-X^{n*k}
    extra = SubMod(top, coeff(poly,n*k), p);
    SetCoeff(poly, n*k); // set the top coefficient of X^{n*k} to one
  }

  long t = IsZero(extra)? divc(n,2) : n;
  DynamicCtxtPowers giantStep(x2k, t);

  if (!IsOne(top)) {
    poly *= topInv; // Multiply by topInv to make into a monic polynomial
    for (long i=0; i<=n*k; i++) rem(poly[i], poly[i], p);
    poly.normalize();
  }
  recursivePolyEval(ret, poly, k, babyStep, giantStep);

  if (!IsOne(top)) {
    ret.multByConstant(top);
  }

  if (!IsZero(extra)) { // if we added a term, now is the time to subtract back
    Ctxt topTerm = giantStep.getPower(n);
    topTerm.multByConstant(extra);
    ret -= topTerm;
  }
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:91,代码来源:polyEval.cpp

示例13: res

void EncryptedArrayDerived<type>::mat_mul(Ctxt& ctxt, const PlaintextBlockMatrixBaseInterface& mat) const
{
  FHE_TIMER_START;
  assert(this == &mat.getEA().getDerived(type()));
  assert(&context == &ctxt.getContext());

  RBak bak; bak.save(); tab.restoreContext();

  const PlaintextBlockMatrixInterface<type>& mat1 = 
    dynamic_cast< const PlaintextBlockMatrixInterface<type>& >( mat );

  ctxt.cleanUp(); // not sure, but this may be a good idea

  Ctxt res(ctxt.getPubKey(), ctxt.getPtxtSpace());
  // a new ciphertext, encrypting zero
  

  long nslots = size();
  long d = getDegree();

  mat_R entry;
  entry.SetDims(d, d);

  vector<RX> entry1;
  entry1.resize(d);
  
  vector< vector<RX> > diag;
  diag.resize(nslots);
  for (long j = 0; j < nslots; j++) diag[j].resize(d);

  for (long i = 0; i < nslots; i++) {
    // process diagonal i


    bool zDiag = true;
    long nzLast = -1;

    for (long j = 0; j < nslots; j++) {
      bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j);
      assert(zEntry || (entry.NumRows() == d && entry.NumCols() == d));
        // get(...) returns true if the entry is empty, false otherwise

      if (!zEntry && IsZero(entry)) zEntry=true; // zero is an empty entry too

      if (!zEntry) {    // non-empty entry

        zDiag = false;  // mark diagonal as non-empty

        // clear entries between last nonzero entry and this one

        for (long jj = nzLast+1; jj < j; jj++) {
          for (long k = 0; k < d; k++)
            clear(diag[jj][k]);
        }

        nzLast = j;

        // recode entry as a vector of polynomials
        for (long k = 0; k < d; k++) conv(entry1[k], entry[k]);

        // compute the lin poly coeffs
        buildLinPolyCoeffs(diag[j], entry1);
      }
    }

    if (zDiag) continue; // zero diagonal, continue

    // clear trailing zero entries    
    for (long jj = nzLast+1; jj < nslots; jj++) {
      for (long k = 0; k < d; k++)
        clear(diag[jj][k]);
    }

    // now diag[j] contains the lin poly coeffs

    Ctxt shCtxt = ctxt;
    rotate(shCtxt, i); 

    // apply the linearlized polynomial
    for (long k = 0; k < d; k++) {

      // compute the constant
      bool zConst = true;
      vector<RX> cvec;
      cvec.resize(nslots);
      for (long j = 0; j < nslots; j++) {
        cvec[j] = diag[j][k];
        if (!IsZero(cvec[j])) zConst = false;
      }

      if (zConst) continue;

      ZZX cpoly;
      encode(cpoly, cvec);
      // FIXME: record the encoded polynomial for future use

      Ctxt shCtxt1 = shCtxt;
      shCtxt1.frobeniusAutomorph(k);
      shCtxt1.multByConstant(cpoly);
      res += shCtxt1;
//.........这里部分代码省略.........
开发者ID:hsibyani,项目名称:HElib,代码行数:101,代码来源:EncryptedArray.cpp


注:本文中的Ctxt::getPtxtSpace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。