当前位置: 首页>>代码示例>>C++>>正文


C++ Ctxt::addConstant方法代码示例

本文整理汇总了C++中Ctxt::addConstant方法的典型用法代码示例。如果您正苦于以下问题:C++ Ctxt::addConstant方法的具体用法?C++ Ctxt::addConstant怎么用?C++ Ctxt::addConstant使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Ctxt的用法示例。


在下文中一共展示了Ctxt::addConstant方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: add_noise_to_coeff

void add_noise_to_coeff(Ctxt& res, long n, long p, long except) {
    NTL::ZZX noise;

    for (long i = 0; i < n; i++) {
        NTL::SetCoeff(noise, i, NTL::RandomBnd(p));
    }
    NTL::SetCoeff(noise, except, 0);
    res.addConstant(noise);
}
开发者ID:fionser,项目名称:MDLHELib,代码行数:9,代码来源:FHEUtils.cpp

示例2: assert

// Simple evaluation sum f_i * X^i, assuming that babyStep has enough powers
static void 
simplePolyEval(Ctxt& ret, const ZZX& poly, DynamicCtxtPowers& babyStep)
{
  ret.clear();
  if (deg(poly)<0) return;       // the zero polynomial always returns zero

  assert (deg(poly)<=babyStep.size()); // ensure that we have enough powers

  ZZ coef;
  ZZ p = to_ZZ(babyStep[0].getPtxtSpace());
  for (long i=1; i<=deg(poly); i++) {
    rem(coef, coeff(poly,i),p);
    if (coef > p/2) coef -= p;

    Ctxt tmp = babyStep.getPower(i); // X^i
    tmp.multByConstant(coef);        // f_i X^i
    ret += tmp;
  }
  // Add the free term
  rem(coef, ConstTerm(poly), p);
  if (coef > p/2) coef -= p;
  ret.addConstant(coef);
  //  if (verbose) checkPolyEval(ret, babyStep[0], poly);
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:25,代码来源:polyEval.cpp

示例3: negate32

void negate32(Ctxt &x) {
    x.addConstant(*global_maxint);
}
开发者ID:MHBauer,项目名称:helib-demos,代码行数:3,代码来源:simon-blocks.cpp

示例4: reCrypt

// bootstrap a ciphertext to reduce noise
void FHEPubKey::reCrypt(Ctxt &ctxt)
{
  FHE_TIMER_START;

  // Some sanity checks for dummy ciphertext
  long ptxtSpace = ctxt.getPtxtSpace();
  if (ctxt.isEmpty()) return;
  if (ctxt.parts.size()==1 && ctxt.parts[0].skHandle.isOne()) {
    // Dummy encryption, just ensure that it is reduced mod p
    ZZX poly = to_ZZX(ctxt.parts[0]);
    for (long i=0; i<poly.rep.length(); i++)
      poly[i] = to_ZZ( rem(poly[i],ptxtSpace) );
    poly.normalize();
    ctxt.DummyEncrypt(poly);
    return;
  }

  assert(recryptKeyID>=0); // check that we have bootstrapping data

  long p = getContext().zMStar.getP();
  long r = getContext().alMod.getR();
  long p2r = getContext().alMod.getPPowR();

  // the bootstrapping key is encrypted relative to plaintext space p^{e-e'+r}.
  long e = getContext().rcData.e;
  long ePrime = getContext().rcData.ePrime;
  long p2ePrime = power_long(p,ePrime);
  long q = power_long(p,e)+1;
  assert(e>=r);

#ifdef DEBUG_PRINTOUT
  cerr << "reCrypt: p="<<p<<", r="<<r<<", e="<<e<<" ePrime="<<ePrime
       << ", q="<<q<<endl;
#endif

  // can only bootstrap ciphertext with plaintext-space dividing p^r
  assert(p2r % ptxtSpace == 0);

  FHE_NTIMER_START(preProcess);

  // Make sure that this ciphertxt is in canonical form
  if (!ctxt.inCanonicalForm()) ctxt.reLinearize();

  // Mod-switch down if needed
  IndexSet s = ctxt.getPrimeSet() / getContext().specialPrimes; // set minus
  if (s.card()>2) { // leave only bottom two primes
    long frst = s.first();
    long scnd = s.next(frst);
    IndexSet s2(frst,scnd);
    s.retain(s2); // retain only first two primes
  }
  ctxt.modDownToSet(s);

  // key-switch to the bootstrapping key
  ctxt.reLinearize(recryptKeyID);

  // "raw mod-switch" to the bootstrapping mosulus q=p^e+1.
  vector<ZZX> zzParts; // the mod-switched parts, in ZZX format
  double noise = ctxt.rawModSwitch(zzParts, q);
  noise = sqrt(noise);

  // Add multiples of p2r and q to make the zzParts divisible by p^{e'}
  long maxU=0;
  for (long i=0; i<(long)zzParts.size(); i++) {
    // make divisible by p^{e'}
    long newMax = makeDivisible(zzParts[i].rep, p2ePrime, p2r, q,
				getContext().rcData.alpha);
    zzParts[i].normalize();   // normalize after working directly on the rep
    if (maxU < newMax)  maxU = newMax;
  }

  // Check that the estimated noise is still low
  if (noise + maxU*p2r*(skHwts[recryptKeyID]+1) > q/2) 
    cerr << " * noise/q after makeDivisible = "
	 << ((noise + maxU*p2r*(skHwts[recryptKeyID]+1))/q) << endl;

  for (long i=0; i<(long)zzParts.size(); i++)
    zzParts[i] /= p2ePrime;   // divide by p^{e'}

  // Multiply the post-processed cipehrtext by the encrypted sKey
#ifdef DEBUG_PRINTOUT
  cerr << "+ Before recryption ";
  decryptAndPrint(cerr, recryptEkey, *dbgKey, *dbgEa, printFlag);
#endif

  double p0size = to_double(coeffsL2Norm(zzParts[0]));
  double p1size = to_double(coeffsL2Norm(zzParts[1]));
  ctxt = recryptEkey;
  ctxt.multByConstant(zzParts[1], p1size*p1size);
  ctxt.addConstant(zzParts[0], p0size*p0size);

#ifdef DEBUG_PRINTOUT
  cerr << "+ Before linearTrans1 ";
  decryptAndPrint(cerr, ctxt, *dbgKey, *dbgEa, printFlag);
#endif
  FHE_NTIMER_STOP(preProcess);

  // Move the powerful-basis coefficients to the plaintext slots
  FHE_NTIMER_START(LinearTransform1);
//.........这里部分代码省略.........
开发者ID:fionser,项目名称:HElib,代码行数:101,代码来源:recryption.cpp

示例5: polyEval

// Main entry point: Evaluate a cleartext polynomial on an encrypted input
void polyEval(Ctxt& ret, ZZX poly, const Ctxt& x, long k)
     // Note: poly is passed by value, so caller keeps the original
{
  if (deg(poly)<=2) {  // nothing to optimize here
    if (deg(poly)<1) { // A constant
      ret.clear();
      ret.addConstant(coeff(poly, 0));
    } else {           // A linear or quadratic polynomial
      DynamicCtxtPowers babyStep(x, deg(poly));
      simplePolyEval(ret, poly, babyStep);
    }
    return;
  }

  // How many baby steps: set k~sqrt(n/2), rounded up/down to a power of two

  // FIXME: There may be some room for optimization here: it may be possible
  // to choose k as something other than a power of two and still maintain
  // optimal depth, in principle we can try all possible values of k between
  // two consecutive powers of two and choose the one that gives the least
  // number of multiplies, conditioned on minimum depth.

  if (k<=0) {
    long kk = (long) sqrt(deg(poly)/2.0);
    k = 1L << NextPowerOfTwo(kk);

    // heuristic: if k>>kk then use a smaler power of two
    if ((k==16 && deg(poly)>167) || (k>16 && k>(1.44*kk)))
      k /= 2;
  }
#ifdef DEBUG_PRINTOUT
  cerr << "  k="<<k;
#endif

  long n = divc(deg(poly),k);      // n = ceil(deg(p)/k), deg(p) >= k*n
  DynamicCtxtPowers babyStep(x, k);
  const Ctxt& x2k = babyStep.getPower(k);

  // Special case when deg(p)>k*(2^e -1)
  if (n==(1L << NextPowerOfTwo(n))) { // n is a power of two
    DynamicCtxtPowers giantStep(x2k, n/2);
    degPowerOfTwo(ret, poly, k, babyStep, giantStep);
    return;
  }

  // If n is not a power of two, ensure that poly is monic and that
  // its degree is divisible by k, then call the recursive procedure

  const ZZ p = to_ZZ(x.getPtxtSpace());
  ZZ top = LeadCoeff(poly);
  ZZ topInv; // the inverse mod p of the top coefficient of poly (if any)
  bool divisible = (n*k == deg(poly)); // is the degree divisible by k?
  long nonInvertibe = InvModStatus(topInv, top, p);
       // 0 if invertible, 1 if not

  // FIXME: There may be some room for optimization below: instead of
  // adding a term X^{n*k} we can add X^{n'*k} for some n'>n, so long
  // as n' is smaller than the next power of two. We could save a few
  // multiplications since giantStep[n'] may be easier to compute than
  // giantStep[n] when n' has fewer 1's than n in its binary expansion.

  ZZ extra = ZZ::zero();    // extra!=0 denotes an added term extra*X^{n*k}
  if (!divisible || nonInvertibe) {  // need to add a term
    top = to_ZZ(1);  // new top coefficient is one
    topInv = top;    // also the new inverse is one
    // set extra = 1 - current-coeff-of-X^{n*k}
    extra = SubMod(top, coeff(poly,n*k), p);
    SetCoeff(poly, n*k); // set the top coefficient of X^{n*k} to one
  }

  long t = IsZero(extra)? divc(n,2) : n;
  DynamicCtxtPowers giantStep(x2k, t);

  if (!IsOne(top)) {
    poly *= topInv; // Multiply by topInv to make into a monic polynomial
    for (long i=0; i<=n*k; i++) rem(poly[i], poly[i], p);
    poly.normalize();
  }
  recursivePolyEval(ret, poly, k, babyStep, giantStep);

  if (!IsOne(top)) {
    ret.multByConstant(top);
  }

  if (!IsZero(extra)) { // if we added a term, now is the time to subtract back
    Ctxt topTerm = giantStep.getPower(n);
    topTerm.multByConstant(extra);
    ret -= topTerm;
  }
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:91,代码来源:polyEval.cpp


注:本文中的Ctxt::addConstant方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。