本文整理汇总了C++中BinaryOperator::eraseFromParent方法的典型用法代码示例。如果您正苦于以下问题:C++ BinaryOperator::eraseFromParent方法的具体用法?C++ BinaryOperator::eraseFromParent怎么用?C++ BinaryOperator::eraseFromParent使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BinaryOperator
的用法示例。
在下文中一共展示了BinaryOperator::eraseFromParent方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: assert
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = copyFlags(I, Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1));
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
示例2: assert
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
示例3: visitBinaryOperator
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
Ty->getScalarSizeInBits() <= 32) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewDiv = UndefValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
NewDiv = expandDivRem32(Builder, I, Num, Den);
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
return Changed;
}
示例4: updateLoopIterationSpace
/// updateLoopIterationSpace -- Update loop's iteration space if loop
/// body is executed for certain IV range only. For example,
///
/// for (i = 0; i < N; ++i) {
/// if ( i > A && i < B) {
/// ...
/// }
/// }
/// is transformed to iterators from A to B, if A > 0 and B < N.
///
bool LoopIndexSplit::updateLoopIterationSpace() {
SplitCondition = NULL;
if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE
|| ExitCondition->getPredicate() == ICmpInst::ICMP_EQ)
return false;
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *Header = L->getHeader();
BranchInst *BR = dyn_cast<BranchInst>(Header->getTerminator());
if (!BR) return false;
if (!isa<BranchInst>(Latch->getTerminator())) return false;
if (BR->isUnconditional()) return false;
BinaryOperator *AND = dyn_cast<BinaryOperator>(BR->getCondition());
if (!AND) return false;
if (AND->getOpcode() != Instruction::And) return false;
ICmpInst *Op0 = dyn_cast<ICmpInst>(AND->getOperand(0));
ICmpInst *Op1 = dyn_cast<ICmpInst>(AND->getOperand(1));
if (!Op0 || !Op1)
return false;
IVBasedValues.insert(AND);
IVBasedValues.insert(Op0);
IVBasedValues.insert(Op1);
if (!cleanBlock(Header)) return false;
BasicBlock *ExitingBlock = ExitCondition->getParent();
if (!cleanBlock(ExitingBlock)) return false;
// If the merge point for BR is not loop latch then skip this loop.
if (BR->getSuccessor(0) != Latch) {
DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0));
assert (DF0 != DF->end() && "Unable to find dominance frontier");
if (!DF0->second.count(Latch))
return false;
}
if (BR->getSuccessor(1) != Latch) {
DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1));
assert (DF1 != DF->end() && "Unable to find dominance frontier");
if (!DF1->second.count(Latch))
return false;
}
// Verify that loop exiting block has only two predecessor, where one pred
// is split condition block. The other predecessor will become exiting block's
// dominator after CFG is updated. TODO : Handle CFG's where exiting block has
// more then two predecessors. This requires extra work in updating dominator
// information.
BasicBlock *ExitingBBPred = NULL;
for (pred_iterator PI = pred_begin(ExitingBlock), PE = pred_end(ExitingBlock);
PI != PE; ++PI) {
BasicBlock *BB = *PI;
if (Header == BB)
continue;
if (ExitingBBPred)
return false;
else
ExitingBBPred = BB;
}
if (!restrictLoopBound(*Op0))
return false;
if (!restrictLoopBound(*Op1))
return false;
// Update CFG.
if (BR->getSuccessor(0) == ExitingBlock)
BR->setUnconditionalDest(BR->getSuccessor(1));
else
BR->setUnconditionalDest(BR->getSuccessor(0));
AND->eraseFromParent();
if (Op0->use_empty())
Op0->eraseFromParent();
if (Op1->use_empty())
Op1->eraseFromParent();
// Update domiantor info. Now, ExitingBlock has only one predecessor,
// ExitingBBPred, and it is ExitingBlock's immediate domiantor.
DT->changeImmediateDominator(ExitingBlock, ExitingBBPred);
BasicBlock *ExitBlock = ExitingBlock->getTerminator()->getSuccessor(1);
if (L->contains(ExitBlock))
ExitBlock = ExitingBlock->getTerminator()->getSuccessor(0);
// If ExitingBlock is a member of the loop basic blocks' DF list then
// replace ExitingBlock with header and exit block in the DF list
DominanceFrontier::iterator ExitingBlockDF = DF->find(ExitingBlock);
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
if (BB == Header || BB == ExitingBlock)
//.........这里部分代码省略.........
示例5: visitFDiv
// Insert an intrinsic for fast fdiv for safe math situations where we can
// reduce precision. Leave fdiv for situations where the generic node is
// expected to be optimized.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType();
// TODO: Handle half
if (!Ty->getScalarType()->isFloatTy())
return false;
MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
if (!FPMath)
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
float ULP = FPOp->getFPAccuracy();
if (ULP < 2.5f)
return false;
FastMathFlags FMF = FPOp->getFastMathFlags();
bool UnsafeDiv = HasUnsafeFPMath || FMF.unsafeAlgebra() ||
FMF.allowReciprocal();
if (ST->hasFP32Denormals() && !UnsafeDiv)
return false;
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
const AMDGPUIntrinsicInfo *II = TM->getIntrinsicInfo();
Function *Decl
= II->getDeclaration(Mod, AMDGPUIntrinsic::amdgcn_fdiv_fast, {});
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
Value *NewElt;
if (shouldKeepFDivF32(NumEltI, UnsafeDiv)) {
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
} else {
NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
}
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else {
if (!shouldKeepFDivF32(Num, UnsafeDiv))
NewFDiv = Builder.CreateCall(Decl, { Num, Den });
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return true;
}