本文整理汇总了C++中Bignum::pow_mod方法的典型用法代码示例。如果您正苦于以下问题:C++ Bignum::pow_mod方法的具体用法?C++ Bignum::pow_mod怎么用?C++ Bignum::pow_mod使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Bignum
的用法示例。
在下文中一共展示了Bignum::pow_mod方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Verify
bool CommitmentProofOfKnowledge::Verify(const Bignum& A, const Bignum& B) const
{
// TODO: First verify that the values
// S1, S2 and S3 and "challenge" are in the correct ranges
if((this->challenge < Bignum(0)) || (this->challenge > (Bignum(2).pow(256) - Bignum(1)))){
return false;
}
// Compute T1 = g1^S1 * h1^S2 * inverse(A^{challenge}) mod p1
Bignum T1 = A.pow_mod(this->challenge, ap->modulus).inverse(ap->modulus).mul_mod(
(ap->g.pow_mod(S1, ap->modulus).mul_mod(ap->h.pow_mod(S2, ap->modulus), ap->modulus)),
ap->modulus);
// Compute T2 = g2^S1 * h2^S3 * inverse(B^{challenge}) mod p2
Bignum T2 = B.pow_mod(this->challenge, bp->modulus).inverse(bp->modulus).mul_mod(
(bp->g.pow_mod(S1, bp->modulus).mul_mod(bp->h.pow_mod(S3, bp->modulus), bp->modulus)),
bp->modulus);
// Hash T1 and T2 along with all of the public parameters
Bignum computedChallenge = calculateChallenge(A, B, T1, T2);
// Return success if the computed challenge matches the incoming challenge
if(computedChallenge == this->challenge){
return true;
}
// Otherwise return failure
return false;
}
示例2: hasher
/** Verifies that a commitment c is accumulated in accumulator a
*/
bool AccumulatorProofOfKnowledge:: Verify(const Accumulator& a, const Bignum& valueOfCommitmentToCoin) const {
Bignum sg = params->accumulatorPoKCommitmentGroup.g;
Bignum sh = params->accumulatorPoKCommitmentGroup.h;
Bignum g_n = params->accumulatorQRNCommitmentGroup.g;
Bignum h_n = params->accumulatorQRNCommitmentGroup.h;
//According to the proof, this hash should be of length k_prime bits. It is currently greater than that, which should not be a problem, but we should check this.
CHashWriter hasher(0,0);
hasher << *params << sg << sh << g_n << h_n << valueOfCommitmentToCoin << C_e << C_u << C_r << st_1 << st_2 << st_3 << t_1 << t_2 << t_3 << t_4;
Bignum c = Bignum(hasher.GetHash()); //this hash should be of length k_prime bits
Bignum st_1_prime = (valueOfCommitmentToCoin.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * sg.pow_mod(s_alpha, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_phi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum st_2_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * ((valueOfCommitmentToCoin * sg.inverse(params->accumulatorPoKCommitmentGroup.modulus)).pow_mod(s_gamma, params->accumulatorPoKCommitmentGroup.modulus)) * sh.pow_mod(s_psi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum st_3_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * (sg * valueOfCommitmentToCoin).pow_mod(s_sigma, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_xi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum t_1_prime = (C_r.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_zeta, params->accumulatorModulus) * g_n.pow_mod(s_epsilon, params->accumulatorModulus)) % params->accumulatorModulus;
Bignum t_2_prime = (C_e.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_eta, params->accumulatorModulus) * g_n.pow_mod(s_alpha, params->accumulatorModulus)) % params->accumulatorModulus;
Bignum t_3_prime = ((a.getValue()).pow_mod(c, params->accumulatorModulus) * C_u.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus;
Bignum t_4_prime = (C_r.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_delta, params->accumulatorModulus)) * ((g_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus;
bool result = false;
bool result_st1 = (st_1 == st_1_prime);
bool result_st2 = (st_2 == st_2_prime);
bool result_st3 = (st_3 == st_3_prime);
bool result_t1 = (t_1 == t_1_prime);
bool result_t2 = (t_2 == t_2_prime);
bool result_t3 = (t_3 == t_3_prime);
bool result_t4 = (t_4 == t_4_prime);
bool result_range = ((s_alpha >= -(params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1))) && (s_alpha <= (params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1))));
result = result_st1 && result_st2 && result_st3 && result_t1 && result_t2 && result_t3 && result_t4 && result_range;
return result;
}
示例3: ZerocoinException
Bignum
generateRandomPrime(uint32_t primeBitLen, uint256 in_seed, uint256 *out_seed,
uint32_t *prime_gen_counter)
{
// Verify that primeBitLen is not too small
if (primeBitLen < 2) {
throw ZerocoinException("Prime length is too short");
}
// If primeBitLen < 33 bits, perform the base case.
if (primeBitLen < 33) {
Bignum result(0);
// Set prime_seed = in_seed, prime_gen_counter = 0.
uint256 prime_seed = in_seed;
(*prime_gen_counter) = 0;
// Loop up to "4 * primeBitLen" iterations.
while ((*prime_gen_counter) < (4 * primeBitLen)) {
// Generate a pseudorandom integer "c" of length primeBitLength bits
uint32_t iteration_count;
Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count);
#ifdef ZEROCOIN_DEBUG
cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl;
cout << "Generated c = " << c << endl;
#endif
prime_seed += (iteration_count + 1);
(*prime_gen_counter)++;
// Set "intc" to be the least odd integer >= "c" we just generated
uint32_t intc = c.getulong();
intc = (2 * floor(intc / 2.0)) + 1;
#ifdef ZEROCOIN_DEBUG
cout << "Should be odd. c = " << intc << endl;
cout << "The big num is: c = " << c << endl;
#endif
// Perform trial division on this (relatively small) integer to determine if "intc"
// is prime. If so, return success.
if (primalityTestByTrialDivision(intc)) {
// Return "intc" converted back into a Bignum and "prime_seed". We also updated
// the variable "prime_gen_counter" in previous statements.
result = intc;
*out_seed = prime_seed;
// Success
return result;
}
} // while()
// If we reached this point there was an error finding a candidate prime
// so throw an exception.
throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm");
// END OF BASE CASE
}
// If primeBitLen >= 33 bits, perform the recursive case.
else {
// Recurse to find a new random prime of roughly half the size
uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1;
Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter);
// Generate a random integer "x" of primeBitLen bits using the output
// of the previous call.
uint32_t numIterations;
Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations);
(*out_seed) += numIterations + 1;
// Compute "t" = ⎡x / (2 * c0⎤
// TODO no Ceiling call
Bignum t = x / (Bignum(2) * c0);
// Repeat the following procedure until we find a prime (or time out)
for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) {
// If ((2 * t * c0) + 1 > 2^{primeBitLen}),
// then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤.
if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) {
t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0);
}
// Set c = (2 * t * c0) + 1
Bignum c = (Bignum(2) * t * c0) + Bignum(1);
// Increment prime_gen_counter
(*prime_gen_counter)++;
// Test "c" for primality as follows:
// 1. First pick an integer "a" in between 2 and (c - 2)
Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations);
a = Bignum(2) + (a % (c - Bignum(3)));
(*out_seed) += (numIterations + 1);
// 2. Compute "z" = a^{2*t} mod c
Bignum z = a.pow_mod(Bignum(2) * t, c);
// 3. Check if "c" is prime.
// Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1
//.........这里部分代码省略.........