当前位置: 首页>>代码示例>>C++>>正文


C++ Bignum::bitSize方法代码示例

本文整理汇总了C++中Bignum::bitSize方法的典型用法代码示例。如果您正苦于以下问题:C++ Bignum::bitSize方法的具体用法?C++ Bignum::bitSize怎么用?C++ Bignum::bitSize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Bignum的用法示例。


在下文中一共展示了Bignum::bitSize方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: acc

bool
Test_MintAndSpend()
{
	try {
		// This test assumes a list of coins were generated in Test_MintCoin()
		if (gCoins[0] == NULL)
		{
			// No coins: mint some.
			Test_MintCoin();
			if (gCoins[0] == NULL) {
				return false;
			}
		}

		// Accumulate the list of generated coins into a fresh accumulator.
		// The first one gets marked as accumulated for a witness, the
		// others just get accumulated normally.
		Accumulator acc(&g_Params->accumulatorParams);
		AccumulatorWitness wAcc(g_Params, acc, gCoins[0]->getPublicCoin());

		for (uint32_t i = 0; i < TESTS_COINS_TO_ACCUMULATE; i++) {
			acc += gCoins[i]->getPublicCoin();
			wAcc +=gCoins[i]->getPublicCoin();
		}

		// Now spend the coin
		SpendMetaData m(1,1);
		CDataStream cc(SER_NETWORK, PROTOCOL_VERSION);
		cc << *gCoins[0];
		PrivateCoin myCoin(g_Params,cc);

		CoinSpend spend(g_Params, myCoin, acc, wAcc, m);

		// Serialize the proof and deserialize into newSpend
		CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
		ss << spend;
		gProofSize = ss.size();
		CoinSpend newSpend(g_Params, ss);

		// See if we can verify the deserialized proof (return our result)
		bool ret =  newSpend.Verify(acc, m);
		
		// Extract the serial number
		Bignum serialNumber = newSpend.getCoinSerialNumber();
		gSerialNumberSize = ceil((double)serialNumber.bitSize() / 8.0);
		
		return ret;
	} catch (runtime_error &e) {
		cout << e.what() << endl;
		return false;
	}

	return false;
}
开发者ID:Anoncoin,项目名称:anoncoin,代码行数:54,代码来源:Tests.cpp

示例2: ZerocoinException

Bignum
generateRandomPrime(uint32_t primeBitLen, uint256 in_seed, uint256 *out_seed,
                    uint32_t *prime_gen_counter)
{
	// Verify that primeBitLen is not too small
	if (primeBitLen < 2) {
		throw ZerocoinException("Prime length is too short");
	}

	// If primeBitLen < 33 bits, perform the base case.
	if (primeBitLen < 33) {
		Bignum result(0);

		// Set prime_seed = in_seed, prime_gen_counter = 0.
		uint256     prime_seed = in_seed;
		(*prime_gen_counter) = 0;

		// Loop up to "4 * primeBitLen" iterations.
		while ((*prime_gen_counter) < (4 * primeBitLen)) {

			// Generate a pseudorandom integer "c" of length primeBitLength bits
			uint32_t iteration_count;
			Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count);
#ifdef ZEROCOIN_DEBUG
			cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl;
			cout << "Generated c = " << c << endl;
#endif

			prime_seed += (iteration_count + 1);
			(*prime_gen_counter)++;

			// Set "intc" to be the least odd integer >= "c" we just generated
			uint32_t intc = c.getulong();
			intc = (2 * floor(intc / 2.0)) + 1;
#ifdef ZEROCOIN_DEBUG
			cout << "Should be odd. c = " << intc << endl;
			cout << "The big num is: c = " << c << endl;
#endif

			// Perform trial division on this (relatively small) integer to determine if "intc"
			// is prime. If so, return success.
			if (primalityTestByTrialDivision(intc)) {
				// Return "intc" converted back into a Bignum and "prime_seed". We also updated
				// the variable "prime_gen_counter" in previous statements.
				result = intc;
				*out_seed = prime_seed;

				// Success
				return result;
			}
		} // while()

		// If we reached this point there was an error finding a candidate prime
		// so throw an exception.
		throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm");

		// END OF BASE CASE
	}
	// If primeBitLen >= 33 bits, perform the recursive case.
	else {
		// Recurse to find a new random prime of roughly half the size
		uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1;
		Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter);

		// Generate a random integer "x" of primeBitLen bits using the output
		// of the previous call.
		uint32_t numIterations;
		Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations);
		(*out_seed) += numIterations + 1;

		// Compute "t" = ⎡x / (2 * c0⎤
		// TODO no Ceiling call
		Bignum t = x / (Bignum(2) * c0);

		// Repeat the following procedure until we find a prime (or time out)
		for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) {

			// If ((2 * t * c0) + 1 > 2^{primeBitLen}),
			// then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤.
			if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) {
				t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0);
			}

			// Set c = (2 * t * c0) + 1
			Bignum c = (Bignum(2) * t * c0) + Bignum(1);

			// Increment prime_gen_counter
			(*prime_gen_counter)++;

			// Test "c" for primality as follows:
			// 1. First pick an integer "a" in between 2 and (c - 2)
			Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations);
			a = Bignum(2) + (a % (c - Bignum(3)));
			(*out_seed) += (numIterations + 1);

			// 2. Compute "z" = a^{2*t} mod c
			Bignum z = a.pow_mod(Bignum(2) * t, c);

			// 3. Check if "c" is prime.
			//    Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1
//.........这里部分代码省略.........
开发者ID:Anoncoin,项目名称:anoncoin,代码行数:101,代码来源:ParamGeneration.cpp


注:本文中的Bignum::bitSize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。