本文整理汇总了C++中Bignum类的典型用法代码示例。如果您正苦于以下问题:C++ Bignum类的具体用法?C++ Bignum怎么用?C++ Bignum使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Bignum类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: llabs
Bignum Bignum::operator*(const Bignum & bn) const {
Bignum tmp; short symbol = 0, bit;
const Bignum & self = *this;
Bignum::Info info = Bignum::Info(self, bn);
if (self[info.a_index] < 0) { symbol ^= 1; }
if (bn[info.b_index] < 0) { symbol ^= 1; }
self[info.a_index] = llabs(self[info.a_index]);
bn[info.b_index] = llabs(bn[info.b_index]);
for (int i = bignum_len - 1; i >= info.a_index; i--) {
for (int j = bignum_len - 1; j >= info.b_index; j--) {
bit = i - ( (bignum_len - 1) - j);
tmp[bit] += (self[i] * bn[j]);
tmp.carry(bit);
}
}
if (symbol) {
tmp[-tmp.bignum_used_len()] *= -1;
}
return tmp;
}
示例2: calculateChallenge
bool CommitmentProofOfKnowledge::Verify(const Bignum& A, const Bignum& B) const
{
// TODO: First verify that the values
// S1, S2 and S3 and "challenge" are in the correct ranges
if((this->challenge < Bignum(0)) || (this->challenge > (Bignum(2).pow(256) - Bignum(1)))){
return false;
}
// Compute T1 = g1^S1 * h1^S2 * inverse(A^{challenge}) mod p1
Bignum T1 = A.pow_mod(this->challenge, ap->modulus).inverse(ap->modulus).mul_mod(
(ap->g.pow_mod(S1, ap->modulus).mul_mod(ap->h.pow_mod(S2, ap->modulus), ap->modulus)),
ap->modulus);
// Compute T2 = g2^S1 * h2^S3 * inverse(B^{challenge}) mod p2
Bignum T2 = B.pow_mod(this->challenge, bp->modulus).inverse(bp->modulus).mul_mod(
(bp->g.pow_mod(S1, bp->modulus).mul_mod(bp->h.pow_mod(S3, bp->modulus), bp->modulus)),
bp->modulus);
// Hash T1 and T2 along with all of the public parameters
Bignum computedChallenge = calculateChallenge(A, B, T1, T2);
// Return success if the computed challenge matches the incoming challenge
if(computedChallenge == this->challenge){
return true;
}
// Otherwise return failure
return false;
}
示例3: rb_big_sign
int rb_big_sign(VALUE obj) {
NativeMethodEnvironment* env = NativeMethodEnvironment::get();
Bignum* big = c_as<Bignum>(env->get_object(obj));
return big->mp_val()->sign != MP_NEG;
}
示例4: test_coerce_bignum
void test_coerce_bignum() {
Fixnum* one = Fixnum::from(1);
Bignum* e = Bignum::create(state, one);
Array* ary = one->coerce(state, e);
Fixnum* a = try_as<Fixnum>(ary->get(state, 0));
Fixnum* b = try_as<Fixnum>(ary->get(state, 1));
TS_ASSERT_EQUALS(2, ary->size());
TS_ASSERT(a);
TS_ASSERT(b);
TS_ASSERT_EQUALS(one, a);
TS_ASSERT_EQUALS(one, b);
Bignum* f = Bignum::from(state, 9223372036854775807LL);
ary = one->coerce(state, f);
Bignum* c = try_as<Bignum>(ary->get(state, 0));
Bignum* d = try_as<Bignum>(ary->get(state, 1));
TS_ASSERT_EQUALS(2, ary->size());
TS_ASSERT(c);
TS_ASSERT(d);
TS_ASSERT_EQUALS(cTrue, c->equal(state, f));
TS_ASSERT_EQUALS(cTrue, d->equal(state, e));
}
示例5: rb_big_bytes_used
int rb_big_bytes_used(VALUE obj) {
NativeMethodEnvironment* env = NativeMethodEnvironment::get();
Bignum* big = c_as<Bignum>(env->get_object(obj));
return big->size(env->state())->to_native();
}
示例6: Test_GenerateGroupParams
bool
Test_GenerateGroupParams()
{
uint32_t pLen = 1024, qLen = 256, count;
IntegerGroupParams group;
for (count = 0; count < 1; count++) {
try {
group = deriveIntegerGroupParams(calculateSeed(GetTestModulus(), "test", ZEROCOIN_DEFAULT_SECURITYLEVEL, "TEST GROUP"), pLen, qLen);
} catch (std::runtime_error e) {
cout << "Caught exception " << e.what() << endl;
return false;
}
// Now perform some simple tests on the resulting parameters
if (group.groupOrder.bitSize() < qLen || group.modulus.bitSize() < pLen) {
return false;
}
Bignum c = group.g.pow_mod(group.groupOrder, group.modulus);
//cout << "g^q mod p = " << c << endl;
if (!(c.isOne())) return false;
// Try at multiple parameter sizes
pLen = pLen * 1.5;
qLen = qLen * 1.5;
}
return true;
}
示例7: test_mul_with_bignum
void test_mul_with_bignum() {
Fixnum* one = as<Fixnum>(Fixnum::from(2));
Bignum* two = Bignum::from(state, (native_int)FIXNUM_MAX + 10);
Integer* three = one->mul(state, two);
TS_ASSERT_EQUALS(three->class_object(state), G(bignum));
Bignum* expected = as<Bignum>(two->mul(state, Fixnum::from(2)));
TS_ASSERT_EQUALS(cTrue, as<Bignum>(three)->equal(state, expected));
}
示例8: test_get_type
void test_get_type() {
TS_ASSERT_EQUALS(Qnil->get_type(), NilType);
TS_ASSERT_EQUALS(Qtrue->get_type(), TrueType);
TS_ASSERT_EQUALS(Qfalse->get_type(), FalseType);
TS_ASSERT_EQUALS(state->symbol("blah")->get_type(), SymbolType);
Object* obj = util_new_object();
Bignum* big = Bignum::from(state, (native_int)13);
TS_ASSERT_EQUALS(obj->get_type(), ObjectType);
TS_ASSERT_EQUALS(big->get_type(), BignumType);
}
示例9: rb_big2dbl
double rb_big2dbl(VALUE obj) {
NativeMethodEnvironment* env = NativeMethodEnvironment::get();
Bignum* big = c_as<Bignum>(env->get_object(obj));
double d = big->to_double(env->state());
if(std::isinf(d)) {
rb_warn("Bignum out of Float range");
d = HUGE_VAL;
}
return d;
}
示例10: Test_MintAndSpend
bool
Test_MintAndSpend()
{
try {
// This test assumes a list of coins were generated in Test_MintCoin()
if (gCoins[0] == NULL)
{
// No coins: mint some.
Test_MintCoin();
if (gCoins[0] == NULL) {
return false;
}
}
// Accumulate the list of generated coins into a fresh accumulator.
// The first one gets marked as accumulated for a witness, the
// others just get accumulated normally.
Accumulator acc(&g_Params->accumulatorParams);
AccumulatorWitness wAcc(g_Params, acc, gCoins[0]->getPublicCoin());
for (uint32_t i = 0; i < TESTS_COINS_TO_ACCUMULATE; i++) {
acc += gCoins[i]->getPublicCoin();
wAcc +=gCoins[i]->getPublicCoin();
}
// Now spend the coin
SpendMetaData m(1,1);
CDataStream cc(SER_NETWORK, PROTOCOL_VERSION);
cc << *gCoins[0];
PrivateCoin myCoin(g_Params,cc);
CoinSpend spend(g_Params, myCoin, acc, wAcc, m);
// Serialize the proof and deserialize into newSpend
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << spend;
gProofSize = ss.size();
CoinSpend newSpend(g_Params, ss);
// See if we can verify the deserialized proof (return our result)
bool ret = newSpend.Verify(acc, m);
// Extract the serial number
Bignum serialNumber = newSpend.getCoinSerialNumber();
gSerialNumberSize = ceil((double)serialNumber.bitSize() / 8.0);
return ret;
} catch (runtime_error &e) {
cout << e.what() << endl;
return false;
}
return false;
}
示例11: rb_big2dbl
double rb_big2dbl(VALUE obj) {
NativeMethodEnvironment* env = NativeMethodEnvironment::get();
Bignum* big = c_as<Bignum>(env->get_object(obj));
double d = big->to_double(env->state());
if(isinf(d)) {
rb_warn("Bignum out of Float range");
if(big->mp_val()->sign == MP_NEG) {
d = -HUGE_VAL;
} else {
d = HUGE_VAL;
}
}
return d;
}
示例12: Test_InvalidCoin
bool Test_InvalidCoin()
{
Bignum coinValue;
try {
// Pick a random non-prime Bignum
for (uint32_t i = 0; i < NON_PRIME_TESTS; i++) {
coinValue = Bignum::randBignum(g_Params->coinCommitmentGroup.modulus);
coinValue = coinValue * 2;
if (!coinValue.isPrime()) break;
}
PublicCoin pubCoin(g_Params);
if (pubCoin.validate()) {
// A blank coin should not be valid!
return false;
}
PublicCoin pubCoin2(g_Params, coinValue, ZQ_LOVELACE);
if (pubCoin2.validate()) {
// A non-prime coin should not be valid!
return false;
}
PublicCoin pubCoin3 = pubCoin2;
if (pubCoin2.validate()) {
// A copy of a non-prime coin should not be valid!
return false;
}
// Serialize and deserialize the coin
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << pubCoin;
PublicCoin pubCoin4(g_Params, ss);
if (pubCoin4.validate()) {
// A deserialized copy of a non-prime coin should not be valid!
return false;
}
} catch (runtime_error &e) {
cout << "Caught exception: " << e.what() << endl;
return false;
}
return true;
}
示例13: PublicCoin
void PrivateCoin::mintCoinFast(const CoinDenomination denomination) {
// Generate a random serial number in the range 0...{q-1} where
// "q" is the order of the commitment group.
Bignum s = Bignum::randBignum(this->params->coinCommitmentGroup.groupOrder);
// Generate a random number "r" in the range 0...{q-1}
Bignum r = Bignum::randBignum(this->params->coinCommitmentGroup.groupOrder);
// Manually compute a Pedersen commitment to the serial number "s" under randomness "r"
// C = g^s * h^r mod p
Bignum commitmentValue = this->params->coinCommitmentGroup.g.pow_mod(s, this->params->coinCommitmentGroup.modulus).mul_mod(this->params->coinCommitmentGroup.h.pow_mod(r, this->params->coinCommitmentGroup.modulus), this->params->coinCommitmentGroup.modulus);
// Repeat this process up to MAX_COINMINT_ATTEMPTS times until
// we obtain a prime number
for (uint32_t attempt = 0; attempt < MAX_COINMINT_ATTEMPTS; attempt++) {
// First verify that the commitment is a prime number
// in the appropriate range. If not, we'll throw this coin
// away and generate a new one.
if (commitmentValue.isPrime(ZEROCOIN_MINT_PRIME_PARAM) &&
commitmentValue >= params->accumulatorParams.minCoinValue &&
commitmentValue <= params->accumulatorParams.maxCoinValue) {
// Found a valid coin. Store it.
this->serialNumber = s;
this->randomness = r;
this->publicCoin = PublicCoin(params, commitmentValue, denomination);
// Success! We're done.
return;
}
// Generate a new random "r_delta" in 0...{q-1}
Bignum r_delta = Bignum::randBignum(this->params->coinCommitmentGroup.groupOrder);
// The commitment was not prime. Increment "r" and recalculate "C":
// r = r + r_delta mod q
// C = C * h mod p
r = (r + r_delta) % this->params->coinCommitmentGroup.groupOrder;
commitmentValue = commitmentValue.mul_mod(this->params->coinCommitmentGroup.h.pow_mod(r_delta, this->params->coinCommitmentGroup.modulus), this->params->coinCommitmentGroup.modulus);
}
// We only get here if we did not find a coin within
// MAX_COINMINT_ATTEMPTS. Throw an exception.
throw ZerocoinException("Unable to mint a new Zerocoin (too many attempts)");
}
示例14: init
Bignum::Bignum(const Bignum & bn) {
init();
decimal_point = bn.decimal_point;
bignum_len = bn.bignum_len;
for (int i = bignum_len - bn.bignum_used_len(); i < bignum_len; i++) {
bignum[i] = bn[i];
}
}
示例15: Verify
/** Verifies that a commitment c is accumulated in accumulator a
*/
bool AccumulatorProofOfKnowledge:: Verify(const Accumulator& a, const Bignum& valueOfCommitmentToCoin) const {
Bignum sg = params->accumulatorPoKCommitmentGroup.g;
Bignum sh = params->accumulatorPoKCommitmentGroup.h;
Bignum g_n = params->accumulatorQRNCommitmentGroup.g;
Bignum h_n = params->accumulatorQRNCommitmentGroup.h;
//According to the proof, this hash should be of length k_prime bits. It is currently greater than that, which should not be a problem, but we should check this.
CHashWriter hasher(0,0);
hasher << *params << sg << sh << g_n << h_n << valueOfCommitmentToCoin << C_e << C_u << C_r << st_1 << st_2 << st_3 << t_1 << t_2 << t_3 << t_4;
Bignum c = Bignum(hasher.GetHash()); //this hash should be of length k_prime bits
Bignum st_1_prime = (valueOfCommitmentToCoin.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * sg.pow_mod(s_alpha, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_phi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum st_2_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * ((valueOfCommitmentToCoin * sg.inverse(params->accumulatorPoKCommitmentGroup.modulus)).pow_mod(s_gamma, params->accumulatorPoKCommitmentGroup.modulus)) * sh.pow_mod(s_psi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum st_3_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * (sg * valueOfCommitmentToCoin).pow_mod(s_sigma, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_xi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus;
Bignum t_1_prime = (C_r.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_zeta, params->accumulatorModulus) * g_n.pow_mod(s_epsilon, params->accumulatorModulus)) % params->accumulatorModulus;
Bignum t_2_prime = (C_e.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_eta, params->accumulatorModulus) * g_n.pow_mod(s_alpha, params->accumulatorModulus)) % params->accumulatorModulus;
Bignum t_3_prime = ((a.getValue()).pow_mod(c, params->accumulatorModulus) * C_u.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus;
Bignum t_4_prime = (C_r.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_delta, params->accumulatorModulus)) * ((g_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus;
bool result = false;
bool result_st1 = (st_1 == st_1_prime);
bool result_st2 = (st_2 == st_2_prime);
bool result_st3 = (st_3 == st_3_prime);
bool result_t1 = (t_1 == t_1_prime);
bool result_t2 = (t_2 == t_2_prime);
bool result_t3 = (t_3 == t_3_prime);
bool result_t4 = (t_4 == t_4_prime);
bool result_range = ((s_alpha >= -(params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1))) && (s_alpha <= (params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1))));
result = result_st1 && result_st2 && result_st3 && result_t1 && result_t2 && result_t3 && result_t4 && result_range;
return result;
}