本文整理汇总了C++中Bignum::gcd方法的典型用法代码示例。如果您正苦于以下问题:C++ Bignum::gcd方法的具体用法?C++ Bignum::gcd怎么用?C++ Bignum::gcd使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Bignum
的用法示例。
在下文中一共展示了Bignum::gcd方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ZerocoinException
//.........这里部分代码省略.........
// Loop up to "4 * primeBitLen" iterations.
while ((*prime_gen_counter) < (4 * primeBitLen)) {
// Generate a pseudorandom integer "c" of length primeBitLength bits
uint32_t iteration_count;
Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count);
#ifdef ZEROCOIN_DEBUG
cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl;
cout << "Generated c = " << c << endl;
#endif
prime_seed += (iteration_count + 1);
(*prime_gen_counter)++;
// Set "intc" to be the least odd integer >= "c" we just generated
uint32_t intc = c.getulong();
intc = (2 * floor(intc / 2.0)) + 1;
#ifdef ZEROCOIN_DEBUG
cout << "Should be odd. c = " << intc << endl;
cout << "The big num is: c = " << c << endl;
#endif
// Perform trial division on this (relatively small) integer to determine if "intc"
// is prime. If so, return success.
if (primalityTestByTrialDivision(intc)) {
// Return "intc" converted back into a Bignum and "prime_seed". We also updated
// the variable "prime_gen_counter" in previous statements.
result = intc;
*out_seed = prime_seed;
// Success
return result;
}
} // while()
// If we reached this point there was an error finding a candidate prime
// so throw an exception.
throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm");
// END OF BASE CASE
}
// If primeBitLen >= 33 bits, perform the recursive case.
else {
// Recurse to find a new random prime of roughly half the size
uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1;
Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter);
// Generate a random integer "x" of primeBitLen bits using the output
// of the previous call.
uint32_t numIterations;
Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations);
(*out_seed) += numIterations + 1;
// Compute "t" = ⎡x / (2 * c0⎤
// TODO no Ceiling call
Bignum t = x / (Bignum(2) * c0);
// Repeat the following procedure until we find a prime (or time out)
for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) {
// If ((2 * t * c0) + 1 > 2^{primeBitLen}),
// then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤.
if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) {
t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0);
}
// Set c = (2 * t * c0) + 1
Bignum c = (Bignum(2) * t * c0) + Bignum(1);
// Increment prime_gen_counter
(*prime_gen_counter)++;
// Test "c" for primality as follows:
// 1. First pick an integer "a" in between 2 and (c - 2)
Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations);
a = Bignum(2) + (a % (c - Bignum(3)));
(*out_seed) += (numIterations + 1);
// 2. Compute "z" = a^{2*t} mod c
Bignum z = a.pow_mod(Bignum(2) * t, c);
// 3. Check if "c" is prime.
// Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1
// If so we return "c" as our result.
if (c.gcd(z - Bignum(1)).isOne() && z.pow_mod(c0, c).isOne()) {
// Return "c", out_seed and prime_gen_counter
// (the latter two of which were already updated)
return c;
}
// 4. If the test did not succeed, increment "t" and loop
t = t + Bignum(1);
} // end of test loop
}
// We only reach this point if the test loop has iterated MAX_PRIMEGEN_ATTEMPTS
// and failed to identify a valid prime. Throw an exception.
throw ZerocoinException("Unable to generate random prime (too many tests)");
}