本文整理汇总了C++中AACube::calcCenter方法的典型用法代码示例。如果您正苦于以下问题:C++ AACube::calcCenter方法的具体用法?C++ AACube::calcCenter怎么用?C++ AACube::calcCenter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AACube
的用法示例。
在下文中一共展示了AACube::calcCenter方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
void DiffTraversal::Waypoint::getNextVisibleElementDifferential(DiffTraversal::VisibleElement& next,
const DiffTraversal::View& view, const DiffTraversal::View& lastView) {
if (_nextIndex == -1) {
// root case is special
++_nextIndex;
EntityTreeElementPointer element = _weakElement.lock();
next.element = element;
next.intersection = ViewFrustum::INTERSECT;
return;
} else if (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer element = _weakElement.lock();
if (element) {
while (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer nextElement = element->getChildAtIndex(_nextIndex);
++_nextIndex;
if (nextElement) {
AACube cube = nextElement->getAACube();
// check for LOD truncation
float distance = glm::distance(view.viewFrustum.getPosition(), cube.calcCenter()) + MIN_VISIBLE_DISTANCE;
float angularDiameter = cube.getScale() / distance;
if (angularDiameter > MIN_ELEMENT_ANGULAR_DIAMETER * view.lodScaleFactor) {
if (view.viewFrustum.calculateCubeKeyholeIntersection(cube) != ViewFrustum::OUTSIDE) {
next.element = nextElement;
next.intersection = ViewFrustum::OUTSIDE;
return;
}
}
}
}
}
}
next.element.reset();
next.intersection = ViewFrustum::OUTSIDE;
}
示例2: getAngularSize
float ConicalViewFrustum::getAngularSize(const AACube& cube) const {
auto radius = 0.5f * SQRT_THREE * cube.getScale(); // radius of bounding sphere
auto position = cube.calcCenter() - _position; // position of bounding sphere in view-frame
float distance = glm::length(position);
return getAngularSize(distance, radius);
}
示例3: updateVoxels
void VoxelShapeManager::updateVoxels(const quint64& now, CubeList& cubes) {
const quint64 VOXEL_UPDATE_PERIOD = 100000; // usec
_updateExpiry = now + VOXEL_UPDATE_PERIOD;
PhysicsSimulation* simulation = getSimulation();
if (!simulation) {
return;
}
int numChanges = 0;
VoxelPool::iterator voxelItr = _voxels.begin();
while (voxelItr != _voxels.end()) {
// look for this voxel in cubes
CubeList::iterator cubeItr = cubes.find(voxelItr.key());
if (cubeItr == cubes.end()) {
// did not find it --> remove the voxel
simulation->removeShape(voxelItr.value()._shape);
voxelItr = _voxels.erase(voxelItr);
++numChanges;
} else {
// found it --> remove the cube
cubes.erase(cubeItr);
voxelItr++;
}
}
// add remaining cubes to _voxels
glm::vec3 simulationOrigin = simulation->getTranslation();
CubeList::const_iterator cubeItr = cubes.constBegin();
while (cubeItr != cubes.constEnd()) {
AACube cube = cubeItr.value();
AACubeShape* shape = new AACubeShape(cube.getScale(), cube.calcCenter() - simulationOrigin);
shape->setEntity(this);
VoxelInfo voxel = {cube, shape };
_voxels.insert(cubeItr.key(), voxel);
++numChanges;
++cubeItr;
}
if (numChanges > 0) {
buildShapes();
}
}
示例4: getProjectedPolygon
OctreeProjectedPolygon ViewFrustum::getProjectedPolygon(const AACube& box) const {
const glm::vec3& bottomNearRight = box.getCorner();
glm::vec3 topFarLeft = box.calcTopFarLeft();
int lookUp = ((_position.x < bottomNearRight.x) ) // 1 = right | compute 6-bit
+ ((_position.x > topFarLeft.x ) << 1) // 2 = left | code to
+ ((_position.y < bottomNearRight.y) << 2) // 4 = bottom | classify camera
+ ((_position.y > topFarLeft.y ) << 3) // 8 = top | with respect to
+ ((_position.z < bottomNearRight.z) << 4) // 16 = front/near | the 6 defining
+ ((_position.z > topFarLeft.z ) << 5); // 32 = back/far | planes
int vertexCount = hullVertexLookup[lookUp][0]; //look up number of vertices
OctreeProjectedPolygon projectedPolygon(vertexCount);
bool pointInView = true;
bool allPointsInView = false; // assume the best, but wait till we know we have a vertex
bool anyPointsInView = false; // assume the worst!
if (vertexCount) {
allPointsInView = true; // assume the best!
for(int i = 0; i < vertexCount; i++) {
int vertexNum = hullVertexLookup[lookUp][i+1];
glm::vec3 point = box.getVertex((BoxVertex)vertexNum);
glm::vec2 projectedPoint = projectPoint(point, pointInView);
allPointsInView = allPointsInView && pointInView;
anyPointsInView = anyPointsInView || pointInView;
projectedPolygon.setVertex(i, projectedPoint);
}
/***
// Now that we've got the polygon, if it extends beyond the clipping window, then let's clip it
// NOTE: This clipping does not improve our overall performance. It basically causes more polygons to
// end up in the same quad/half and so the polygon lists get longer, and that's more calls to polygon.occludes()
if ( (projectedPolygon.getMaxX() > PolygonClip::RIGHT_OF_CLIPPING_WINDOW ) ||
(projectedPolygon.getMaxY() > PolygonClip::TOP_OF_CLIPPING_WINDOW ) ||
(projectedPolygon.getMaxX() < PolygonClip::LEFT_OF_CLIPPING_WINDOW ) ||
(projectedPolygon.getMaxY() < PolygonClip::BOTTOM_OF_CLIPPING_WINDOW) ) {
CoverageRegion::_clippedPolygons++;
glm::vec2* clippedVertices;
int clippedVertexCount;
PolygonClip::clipToScreen(projectedPolygon.getVertices(), vertexCount, clippedVertices, clippedVertexCount);
// Now reset the vertices of our projectedPolygon object
projectedPolygon.setVertexCount(clippedVertexCount);
for(int i = 0; i < clippedVertexCount; i++) {
projectedPolygon.setVertex(i, clippedVertices[i]);
}
delete[] clippedVertices;
lookUp += PROJECTION_CLIPPED;
}
***/
}
// set the distance from our camera position, to the closest vertex
float distance = glm::distance(getPosition(), box.calcCenter());
projectedPolygon.setDistance(distance);
projectedPolygon.setAnyInView(anyPointsInView);
projectedPolygon.setAllInView(allPointsInView);
projectedPolygon.setProjectionType(lookUp); // remember the projection type
return projectedPolygon;
}
示例5: recalculateCollisionShape
void EntityItem::recalculateCollisionShape() {
AACube entityAACube = getMinimumAACube();
entityAACube.scale(TREE_SCALE); // scale to meters
_collisionShape.setTranslation(entityAACube.calcCenter());
_collisionShape.setScale(entityAACube.getScale());
}