scipy.stats.nanstd(array, axis=0)
函數通過忽略沿數組指定軸的數組元素的Nan(不是數字)值來計算標準差。
它的公式-
參數:
array : 具有元素(包括Nan值)的輸入數組或對象,以計算標準偏差。
axis :沿其計算標準偏差的軸。默認情況下軸= 0
返回值:基於設置參數的數組元素的標準偏差(忽略Nan值)。
代碼1:
# standard deviation
import scipy
import numpy as np
arr1 = [1, 3, np.nan, 27]
print("standard deviation using nanstd :", scipy.nanstd(arr1))
print("standard deviation without handling nan value :", scipy.std(arr1))
輸出:
standard deviation using nanstd : 11.813363431112899 standard deviation without handling nan value : nan
代碼2:使用多維數據
# standard deviation
from scipy import std
from scipy import nanstd
import numpy as np
arr1 = [[1, 3, 27],
[3, np.nan, 6],
[np.nan, 6, 3],
[3, 6, np.nan]]
print("standard deviation is :", std(arr1))
print("standard deviation handling nan :", nanstd(arr1))
# using axis = 0
print("\nstandard deviation is with default axis = 0 : \n",
std(arr1, axis = 0))
print("\nstandard deviation handling nan with default axis = 0 : \n",
nanstd(arr1, axis = 0))
# using axis = 1
print("\nstandard deviation is with default axis = 1 : \n",
std(arr1, axis = 1))
print("\nstandard deviation handling nan with default axis = 1 : \n",
nanstd(arr1, axis = 1))
輸出:
standard deviation is : nan standard deviation handling nan : 7.455216087651669 standard deviation is with default axis =0 : [nan nan nan] standard deviation handling nan with default axis =0 : [ 0.94280904 1.41421356 10.67707825] standard deviation is with default axis =1 : [11.81336343 nan nan nan] standard deviation handling nan with default axis =1 : [11.81336343 1.5 1.5 1.5 ]
相關用法
- Python Scipy stats.sem()用法及代碼示例
- Python Scipy stats.mean()用法及代碼示例
- Python Scipy stats.relfreq()用法及代碼示例
- Python Scipy stats.tvar()用法及代碼示例
- Python Scipy stats.gmean()用法及代碼示例
- Python Scipy stats.trimboth()用法及代碼示例
- Python Scipy stats.bayes_mvs()用法及代碼示例
- Python Scipy stats.scoreatpercentile()用法及代碼示例
- Python Scipy stats.nanmean()用法及代碼示例
- Python Scipy stats.moment()用法及代碼示例
- Python Scipy stats.trim1()用法及代碼示例
- Python Scipy stats.kurtosistest()用法及代碼示例
- Python Scipy stats.kurtosis()用法及代碼示例
注:本文由純淨天空篩選整理自vishal3096大神的英文原創作品 sciPy stats.nanstd() function | Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。