重新排列相關 DataFrame ,將高度相關的變量更緊密地分組在一起。
值
cor_df。請參閱correlate
。
例子
x <- correlate(mtcars)
#> Correlation computed with
#> • Method: 'pearson'
#> • Missing treated using: 'pairwise.complete.obs'
rearrange(x) # Default settings
#> # A tibble: 11 × 12
#> term mpg vs drat am gear qsec carb hp
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg NA 0.664 0.681 0.600 0.480 0.419 -0.551 -0.776
#> 2 vs 0.664 NA 0.440 0.168 0.206 0.745 -0.570 -0.723
#> 3 drat 0.681 0.440 NA 0.713 0.700 0.0912 -0.0908 -0.449
#> 4 am 0.600 0.168 0.713 NA 0.794 -0.230 0.0575 -0.243
#> 5 gear 0.480 0.206 0.700 0.794 NA -0.213 0.274 -0.126
#> 6 qsec 0.419 0.745 0.0912 -0.230 -0.213 NA -0.656 -0.708
#> 7 carb -0.551 -0.570 -0.0908 0.0575 0.274 -0.656 NA 0.750
#> 8 hp -0.776 -0.723 -0.449 -0.243 -0.126 -0.708 0.750 NA
#> 9 wt -0.868 -0.555 -0.712 -0.692 -0.583 -0.175 0.428 0.659
#> 10 disp -0.848 -0.710 -0.710 -0.591 -0.556 -0.434 0.395 0.791
#> 11 cyl -0.852 -0.811 -0.700 -0.523 -0.493 -0.591 0.527 0.832
#> # … with 3 more variables: wt <dbl>, disp <dbl>, cyl <dbl>
#> # ℹ Use `colnames()` to see all variable names
rearrange(x, method = "HC") # Different seriation method
#> # A tibble: 11 × 12
#> term wt cyl disp hp carb drat am gear
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 wt NA 0.782 0.888 0.659 0.428 -0.712 -0.692 -0.583
#> 2 cyl 0.782 NA 0.902 0.832 0.527 -0.700 -0.523 -0.493
#> 3 disp 0.888 0.902 NA 0.791 0.395 -0.710 -0.591 -0.556
#> 4 hp 0.659 0.832 0.791 NA 0.750 -0.449 -0.243 -0.126
#> 5 carb 0.428 0.527 0.395 0.750 NA -0.0908 0.0575 0.274
#> 6 drat -0.712 -0.700 -0.710 -0.449 -0.0908 NA 0.713 0.700
#> 7 am -0.692 -0.523 -0.591 -0.243 0.0575 0.713 NA 0.794
#> 8 gear -0.583 -0.493 -0.556 -0.126 0.274 0.700 0.794 NA
#> 9 qsec -0.175 -0.591 -0.434 -0.708 -0.656 0.0912 -0.230 -0.213
#> 10 mpg -0.868 -0.852 -0.848 -0.776 -0.551 0.681 0.600 0.480
#> 11 vs -0.555 -0.811 -0.710 -0.723 -0.570 0.440 0.168 0.206
#> # … with 3 more variables: qsec <dbl>, mpg <dbl>, vs <dbl>
#> # ℹ Use `colnames()` to see all variable names
rearrange(x, absolute = FALSE) # Not using absolute values for arranging
#> # A tibble: 11 × 12
#> term mpg vs drat am gear qsec carb hp
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg NA 0.664 0.681 0.600 0.480 0.419 -0.551 -0.776
#> 2 vs 0.664 NA 0.440 0.168 0.206 0.745 -0.570 -0.723
#> 3 drat 0.681 0.440 NA 0.713 0.700 0.0912 -0.0908 -0.449
#> 4 am 0.600 0.168 0.713 NA 0.794 -0.230 0.0575 -0.243
#> 5 gear 0.480 0.206 0.700 0.794 NA -0.213 0.274 -0.126
#> 6 qsec 0.419 0.745 0.0912 -0.230 -0.213 NA -0.656 -0.708
#> 7 carb -0.551 -0.570 -0.0908 0.0575 0.274 -0.656 NA 0.750
#> 8 hp -0.776 -0.723 -0.449 -0.243 -0.126 -0.708 0.750 NA
#> 9 wt -0.868 -0.555 -0.712 -0.692 -0.583 -0.175 0.428 0.659
#> 10 disp -0.848 -0.710 -0.710 -0.591 -0.556 -0.434 0.395 0.791
#> 11 cyl -0.852 -0.811 -0.700 -0.523 -0.493 -0.591 0.527 0.832
#> # … with 3 more variables: wt <dbl>, disp <dbl>, cyl <dbl>
#> # ℹ Use `colnames()` to see all variable names
相關用法
- R corrr retract 從拉伸的相關表創建 DataFrame
- R corrr rplot 繪製相關 DataFrame 。
- R corrr as_cordf 強製列表和矩陣關聯數據幀
- R corrr correlate 相關 DataFrame
- R corrr pair_n 成對完整案例的數量。
- R corrr dice 返回僅包含選定字段的關聯表
- R corrr stretch 將相關數據幀拉伸為長格式。
- R corrr colpair_map 將函數應用於 DataFrame 中的所有列對
- R corrr autoplot.cor_df 從 cor_df 對象創建相關矩陣
- R corrr as_matrix 將相關數據幀轉換為矩陣格式
- R corrr focus_if 有條件地聚焦相關 DataFrame
- R corrr first_col 將第一列添加到 data.frame
- R corrr focus 關注相關 DataFrame 架的部分。
- R corrr shave 剃掉上/下三角形。
- R corrr fashion 設計用於打印的相關 DataFrame 架。
- R corrr network_plot 相關 DataFrame 的網絡圖
- R SparkR corr用法及代碼示例
- R findGlobals 查找閉包使用的全局函數和變量
- R SparkR count用法及代碼示例
- R SparkR column用法及代碼示例
- R SparkR columns用法及代碼示例
- R checkUsage 檢查 R 代碼是否存在可能的問題
- R showTree R 表達式的打印 Lisp 風格表示
- R compile 字節碼編譯器
- R SparkR cov用法及代碼示例
注:本文由純淨天空篩選整理自Max Kuhn等大神的英文原創作品 Re-arrange a correlation data frame。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。