SOM
位於 class
包(package)。 說明
Kohonen 的Self-Organizing Map是多維縮放的粗略形式。
用法
SOM(data, grid = somgrid(), rlen = 10000, alpha, radii, init)
參數
data |
觀察值的矩陣或 DataFrame ,經過縮放以使歐幾裏得距離合適。 |
grid |
代表網格:參見 |
rlen |
更新次數:僅在 |
alpha |
更改量:對 |
radii |
用於每次更新的鄰域半徑:必須與 |
init |
最初的代表。如果丟失,則從 |
細節
alpha
和 radii
也可以是列表,在這種情況下,依次使用每個組件,從而允許進行兩階段或更多階段的訓練。
值
帶有組件的 "SOM"
類的對象
grid |
網格,類 |
codes |
代表矩陣。 |
例子
require(graphics)
data(crabs, package = "MASS")
lcrabs <- log(crabs[, 4:8])
crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, rep(50,4))])
gr <- somgrid(topo = "hexagonal")
crabs.som <- SOM(lcrabs, gr)
plot(crabs.som)
## 2-phase training
crabs.som2 <- SOM(lcrabs, gr,
alpha = list(seq(0.05, 0, length.out = 1e4), seq(0.02, 0, length.out = 1e5)),
radii = list(seq(8, 1, length.out = 1e4), seq(4, 1, length.out = 1e5)))
plot(crabs.som2)
參考
Kohonen, T. (1995) Self-Organizing Maps. Springer-Verlag
Kohonen, T., Hynninen, J., Kangas, J. and Laaksonen, J. (1996) SOM PAK: The self-organizing map program package. Laboratory of Computer and Information Science, Helsinki University of Technology, Technical Report A31.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
也可以看看
相關用法
- R lvq1 學習矢量量化1
- R lvq2 學習矢量量化2.1
- R lvq3 學習矢量量化 3
- R knn.cv k 最近鄰交叉驗證分類
- R olvq1 優化學習矢量量化1
- R knn1 1-最近鄰分類
- R batchSOM 自組織映射:批處理算法
- R condense k-NN 分類器的壓縮訓練集
- R multiedit k-NN 分類器的多重編輯
- R lvqinit 初始化LVQ碼本
- R knn k-最近鄰分類
- R somgrid 繪製 SOM 擬合圖
- R lvqtest 從 LVQ 碼本對測試集進行分類
- R reduce.nn 減少 k-NN 分類器的訓練集
- R summary.clara “clara”對象的摘要方法
- R diana 分裂分析聚類
- R pluton 鈈同位素成分批次
- R votes.repub 總統選舉中共和黨候選人的投票
- R agnes 凝聚嵌套(層次聚類)
- R print.mona MONA 對象的打印方法
- R print.clara CLARA 對象的打印方法
- R mona 二元變量的單論分析聚類
- R plot.diana 分裂層次聚類圖
- R plot.mona 一元分裂層次聚類的旗幟
- R bannerplot 繪圖橫幅(層次聚類)
注:本文由純淨天空篩選整理自R-devel大神的英文原創作品 Self-Organizing Maps: Online Algorithm。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。