當前位置: 首頁>>代碼示例>>Python>>正文


Python TPOTClassifier.predict_proba方法代碼示例

本文整理匯總了Python中tpot.TPOTClassifier.predict_proba方法的典型用法代碼示例。如果您正苦於以下問題:Python TPOTClassifier.predict_proba方法的具體用法?Python TPOTClassifier.predict_proba怎麽用?Python TPOTClassifier.predict_proba使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tpot.TPOTClassifier的用法示例。


在下文中一共展示了TPOTClassifier.predict_proba方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_predict_proba

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import predict_proba [as 別名]
def test_predict_proba():
    """Assert that the TPOT predict_proba function returns a numpy matrix of shape (num_testing_rows, num_testing_classes)"""

    tpot_obj = TPOTClassifier()
    pipeline_string= ('DecisionTreeClassifier(input_matrix, DecisionTreeClassifier__criterion=gini'
    ', DecisionTreeClassifier__max_depth=8,DecisionTreeClassifier__min_samples_leaf=5,'
    'DecisionTreeClassifier__min_samples_split=5)')
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict_proba(testing_features)
    num_labels = np.amax(testing_classes) + 1

    assert result.shape == (testing_features.shape[0], num_labels)
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:17,代碼來源:tests.py

示例2: test_predict_proba2

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import predict_proba [as 別名]
def test_predict_proba2():
    """Assert that the TPOT predict_proba function returns a numpy matrix filled with probabilities (float)"""

    tpot_obj = TPOTClassifier()
    pipeline_string= ('DecisionTreeClassifier(input_matrix, DecisionTreeClassifier__criterion=gini'
    ', DecisionTreeClassifier__max_depth=8,DecisionTreeClassifier__min_samples_leaf=5,'
    'DecisionTreeClassifier__min_samples_split=5)')
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict_proba(testing_features)

    rows = result.shape[0]
    columns = result.shape[1]

    try:
        for i in range(rows):
            for j in range(columns):
                float_range(result[i][j])
        assert True
    except Exception:
        assert False
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:25,代碼來源:tests.py


注:本文中的tpot.TPOTClassifier.predict_proba方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。