當前位置: 首頁>>代碼示例>>Python>>正文


Python TPOTClassifier.fit方法代碼示例

本文整理匯總了Python中tpot.TPOTClassifier.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python TPOTClassifier.fit方法的具體用法?Python TPOTClassifier.fit怎麽用?Python TPOTClassifier.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tpot.TPOTClassifier的用法示例。


在下文中一共展示了TPOTClassifier.fit方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_fit2

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_fit2():
    """Assert that the TPOT fit function provides an optimized pipeline when config_dict is \'TPOT light\'"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0, config_dict='TPOT light')
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert not (tpot_obj._start_datetime is None)
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:9,代碼來源:tests.py

示例2: test_fit

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_fit():
    """Assert that the TPOT fit function provides an optimized pipeline"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, generations=1, verbosity=0)
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert tpot_obj._gp_generation == 0
    assert not (tpot_obj._start_datetime is None)
開發者ID:rhiever,項目名稱:tpot,代碼行數:10,代碼來源:tests.py

示例3: test_invaild_dataset_warning

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_invaild_dataset_warning():
    """Assert that the TPOT fit function raises a ValueError when dataset is not in right format"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0)
    bad_training_classes = training_classes.reshape((1, len(training_classes)))# common mistake in classes
    try:
        tpot_obj.fit(training_features ,bad_training_classes) # typo for balanced_accuracy
        assert False
    except ValueError:
        pass
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:11,代碼來源:tests.py

示例4: test_imputer_in_export

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_imputer_in_export():
    """Assert that TPOT exports a pipeline with an imputation step if imputation was used in fit()."""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0,
        config_dict='TPOT light'
    )
    features_with_nan = np.copy(training_features)
    features_with_nan[0][0] = float('nan')

    tpot_obj.fit(features_with_nan, training_target)
    # use fixed pipeline since the random.seed() performs differently in python 2.* and 3.*
    pipeline_string = (
        'KNeighborsClassifier('
        'input_matrix, '
        'KNeighborsClassifier__n_neighbors=10, '
        'KNeighborsClassifier__p=1, '
        'KNeighborsClassifier__weights=uniform'
        ')'
    )
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)

    export_code = export_pipeline(tpot_obj._optimized_pipeline, tpot_obj.operators, tpot_obj._pset, tpot_obj._imputed)

    expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import Imputer

# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
            train_test_split(features, tpot_data['target'].values, random_state=None)

imputer = Imputer(strategy="median")
imputer.fit(training_features)
training_features = imputer.transform(training_features)
testing_features = imputer.transform(testing_features)

exported_pipeline = KNeighborsClassifier(n_neighbors=10, p=1, weights="uniform")

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""

    assert_equal(export_code, expected_code)
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:53,代碼來源:export_tests.py

示例5: test_warm_start

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_warm_start():
    """Assert that the TPOT warm_start flag stores the pop and pareto_front from the first run"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0, warm_start=True)
    tpot_obj.fit(training_features, training_classes)

    assert tpot_obj._pop != None
    assert tpot_obj._pareto_front != None

    first_pop = tpot_obj._pop
    first_pareto_front = tpot_obj._pareto_front

    tpot_obj.random_state = 21
    tpot_obj.fit(training_features, training_classes)

    assert tpot_obj._pop == first_pop
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:17,代碼來源:tests.py

示例6: load_digits

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
from tpot import TPOTClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

digits = load_digits()

X_train, X_test, y_train,  y_test = train_test_split(digits.data, digits.target,
													train_size = 0.75, test_size = 0.25)

tpot = TPOTClassifier(generations = 5, population_size = 20, verbosity = 2)

tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_mnist_pipeline.py')
開發者ID:ShenXiaoJun,項目名稱:Data-Analysis,代碼行數:16,代碼來源:tpot_basic.py

示例7: generate_model

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def generate_model(generations, train_X, train_y):
	tpot_generator = TPOTClassifier(generations=generations, verbosity=2)
	tpot_generator.fit(train_X, train_y)
	tpot_generator.export('tpot_model' + generations + '.py')
開發者ID:marktrovinger,項目名稱:RunPassBot,代碼行數:6,代碼來源:tpot_generation.py

示例8: main

# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def main():

  # set up the path to the data sets and the data were are going to experiment 
  # with 
  base_path = '/scratch/ditzler/Git/ClassificationDatasets/csv/'
  data_setz = [#'bank',
    'blood',
    'breast-cancer-wisc-diag',
    'breast-cancer-wisc-prog',
    'breast-cancer-wisc',
    'breast-cancer',
    'congressional-voting',
    'conn-bench-sonar-mines-rocks',
    'credit-approval',
    'cylinder-bands',
    'echocardiogram',
    #'fertility',
    'haberman-survival',
    'heart-hungarian',
    'hepatitis',
    'ionosphere',
    'mammographic',
    'molec-biol-promoter',
    'musk-1',
    'oocytes_merluccius_nucleus_4d',
    'oocytes_trisopterus_nucleus_2f',
    'ozone',
    'parkinsons',
    'pima',
    #'pittsburg-bridges-T-OR-D';
    'planning',
    'ringnorm',
    #'spambase',
    'spectf_train',
    'statlog-australian-credit',
    'statlog-german-credit',
    'statlog-heart',
    'titanic',
    #'twonorm',
    'vertebral-column-2clases']

  # nsplits is like the number of cv (its bootstraps here) then set up some variales
  # to save the results to. 
  n_splitz = 10
  errors = np.zeros((len(data_setz),))
  fms = np.zeros((len(data_setz),))
  times = np.zeros((len(data_setz),))
  m = 0

  for n in range(n_splitz):
    print 'Spilt ' + str(n) + ' of ' + str(n_splitz)
    for i in range(len(data_setz)):
      print '    ' + data_setz[i]
      df = pd.read_csv(base_path + data_setz[i] + '.csv', sep=',')
      data = df.as_matrix()
      X = data[:, :-1]
      y = data[:, -1]
      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=0.25, random_state=m)
      m += 1
      
      ts = time.time()
      tpot = TPOTClassifier(generations=10, population_size=25, verbosity=1)
      tpot.fit(X_train, y_train)
      times[i] += (time.time() - ts)

      errors[i] += (1-tpot.score(X_test, y_test))
      yhat = tpot.predict(X_test)
      fms[i] += f1_score(y_test, yhat, average='macro')
  
  errors /= n_splitz
  fms /= n_splitz
  times /= n_splitz

  df = pd.DataFrame({'errors': errors, 'fms': fms, 'times': times})
  df.to_csv(path_or_buf='tpot-results2.csv', sep=',')

  return None 
開發者ID:gditzler,項目名稱:atsd-experiments,代碼行數:79,代碼來源:tpots-experiment.py


注:本文中的tpot.TPOTClassifier.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。