本文整理匯總了Python中tpot.TPOTClassifier.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python TPOTClassifier.fit方法的具體用法?Python TPOTClassifier.fit怎麽用?Python TPOTClassifier.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tpot.TPOTClassifier
的用法示例。
在下文中一共展示了TPOTClassifier.fit方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_fit2
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_fit2():
"""Assert that the TPOT fit function provides an optimized pipeline when config_dict is \'TPOT light\'"""
tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0, config_dict='TPOT light')
tpot_obj.fit(training_features, training_classes)
assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
assert not (tpot_obj._start_datetime is None)
示例2: test_fit
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_fit():
"""Assert that the TPOT fit function provides an optimized pipeline"""
tpot_obj = TPOTClassifier(random_state=42, population_size=1, generations=1, verbosity=0)
tpot_obj.fit(training_features, training_classes)
assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
assert tpot_obj._gp_generation == 0
assert not (tpot_obj._start_datetime is None)
示例3: test_invaild_dataset_warning
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_invaild_dataset_warning():
"""Assert that the TPOT fit function raises a ValueError when dataset is not in right format"""
tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0)
bad_training_classes = training_classes.reshape((1, len(training_classes)))# common mistake in classes
try:
tpot_obj.fit(training_features ,bad_training_classes) # typo for balanced_accuracy
assert False
except ValueError:
pass
示例4: test_imputer_in_export
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_imputer_in_export():
"""Assert that TPOT exports a pipeline with an imputation step if imputation was used in fit()."""
tpot_obj = TPOTClassifier(
random_state=42,
population_size=1,
offspring_size=2,
generations=1,
verbosity=0,
config_dict='TPOT light'
)
features_with_nan = np.copy(training_features)
features_with_nan[0][0] = float('nan')
tpot_obj.fit(features_with_nan, training_target)
# use fixed pipeline since the random.seed() performs differently in python 2.* and 3.*
pipeline_string = (
'KNeighborsClassifier('
'input_matrix, '
'KNeighborsClassifier__n_neighbors=10, '
'KNeighborsClassifier__p=1, '
'KNeighborsClassifier__weights=uniform'
')'
)
tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
export_code = export_pipeline(tpot_obj._optimized_pipeline, tpot_obj.operators, tpot_obj._pset, tpot_obj._imputed)
expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import Imputer
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'].values, random_state=None)
imputer = Imputer(strategy="median")
imputer.fit(training_features)
training_features = imputer.transform(training_features)
testing_features = imputer.transform(testing_features)
exported_pipeline = KNeighborsClassifier(n_neighbors=10, p=1, weights="uniform")
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
assert_equal(export_code, expected_code)
示例5: test_warm_start
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def test_warm_start():
"""Assert that the TPOT warm_start flag stores the pop and pareto_front from the first run"""
tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0, warm_start=True)
tpot_obj.fit(training_features, training_classes)
assert tpot_obj._pop != None
assert tpot_obj._pareto_front != None
first_pop = tpot_obj._pop
first_pareto_front = tpot_obj._pareto_front
tpot_obj.random_state = 21
tpot_obj.fit(training_features, training_classes)
assert tpot_obj._pop == first_pop
示例6: load_digits
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
from tpot import TPOTClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target,
train_size = 0.75, test_size = 0.25)
tpot = TPOTClassifier(generations = 5, population_size = 20, verbosity = 2)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export('tpot_mnist_pipeline.py')
示例7: generate_model
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def generate_model(generations, train_X, train_y):
tpot_generator = TPOTClassifier(generations=generations, verbosity=2)
tpot_generator.fit(train_X, train_y)
tpot_generator.export('tpot_model' + generations + '.py')
示例8: main
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import fit [as 別名]
def main():
# set up the path to the data sets and the data were are going to experiment
# with
base_path = '/scratch/ditzler/Git/ClassificationDatasets/csv/'
data_setz = [#'bank',
'blood',
'breast-cancer-wisc-diag',
'breast-cancer-wisc-prog',
'breast-cancer-wisc',
'breast-cancer',
'congressional-voting',
'conn-bench-sonar-mines-rocks',
'credit-approval',
'cylinder-bands',
'echocardiogram',
#'fertility',
'haberman-survival',
'heart-hungarian',
'hepatitis',
'ionosphere',
'mammographic',
'molec-biol-promoter',
'musk-1',
'oocytes_merluccius_nucleus_4d',
'oocytes_trisopterus_nucleus_2f',
'ozone',
'parkinsons',
'pima',
#'pittsburg-bridges-T-OR-D';
'planning',
'ringnorm',
#'spambase',
'spectf_train',
'statlog-australian-credit',
'statlog-german-credit',
'statlog-heart',
'titanic',
#'twonorm',
'vertebral-column-2clases']
# nsplits is like the number of cv (its bootstraps here) then set up some variales
# to save the results to.
n_splitz = 10
errors = np.zeros((len(data_setz),))
fms = np.zeros((len(data_setz),))
times = np.zeros((len(data_setz),))
m = 0
for n in range(n_splitz):
print 'Spilt ' + str(n) + ' of ' + str(n_splitz)
for i in range(len(data_setz)):
print ' ' + data_setz[i]
df = pd.read_csv(base_path + data_setz[i] + '.csv', sep=',')
data = df.as_matrix()
X = data[:, :-1]
y = data[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=0.25, random_state=m)
m += 1
ts = time.time()
tpot = TPOTClassifier(generations=10, population_size=25, verbosity=1)
tpot.fit(X_train, y_train)
times[i] += (time.time() - ts)
errors[i] += (1-tpot.score(X_test, y_test))
yhat = tpot.predict(X_test)
fms[i] += f1_score(y_test, yhat, average='macro')
errors /= n_splitz
fms /= n_splitz
times /= n_splitz
df = pd.DataFrame({'errors': errors, 'fms': fms, 'times': times})
df.to_csv(path_or_buf='tpot-results2.csv', sep=',')
return None