當前位置: 首頁>>代碼示例>>Python>>正文


Python tpot.TPOTClassifier類代碼示例

本文整理匯總了Python中tpot.TPOTClassifier的典型用法代碼示例。如果您正苦於以下問題:Python TPOTClassifier類的具體用法?Python TPOTClassifier怎麽用?Python TPOTClassifier使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了TPOTClassifier類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_random_ind_2

def test_random_ind_2():
    """Assert that the TPOTClassifier can generate the same pipeline export with random seed of 45"""

    tpot_obj = TPOTClassifier(random_state=45)
    tpot_obj._pbar = tqdm(total=1, disable=True)
    pipeline = tpot_obj._toolbox.individual()
    expected_code = """import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from tpot.built_in_operators import ZeroCount

# NOTE: Make sure that the class is labeled 'class' in the data file
tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64)
features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1)
training_features, testing_features, training_classes, testing_classes = \\
    train_test_split(features, tpot_data['class'], random_state=42)

exported_pipeline = make_pipeline(
    ZeroCount(),
    LogisticRegression(C=0.0001, dual=False, penalty="l2")
)

exported_pipeline.fit(training_features, training_classes)
results = exported_pipeline.predict(testing_features)
"""
    assert expected_code == export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset)
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:28,代碼來源:tests.py

示例2: test_fit2

def test_fit2():
    """Assert that the TPOT fit function provides an optimized pipeline when config_dict is \'TPOT light\'"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0, config_dict='TPOT light')
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert not (tpot_obj._start_datetime is None)
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:7,代碼來源:tests.py

示例3: test_export_random_ind

def test_export_random_ind():
    """Assert that the TPOTClassifier can generate the same pipeline export with random seed of 39."""
    tpot_obj = TPOTClassifier(random_state=39)
    tpot_obj._pbar = tqdm(total=1, disable=True)
    pipeline = tpot_obj._toolbox.individual()
    expected_code = """import numpy as np
import pandas as pd
from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeClassifier

# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
            train_test_split(features, tpot_data['target'].values, random_state=42)

exported_pipeline = make_pipeline(
    SelectPercentile(score_func=f_classif, percentile=65),
    DecisionTreeClassifier(criterion="gini", max_depth=7, min_samples_leaf=4, min_samples_split=18)
)

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
    assert expected_code == export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset)
開發者ID:stenpiren,項目名稱:tpot,代碼行數:27,代碼來源:export_tests.py

示例4: test_pipeline_score_save

def test_pipeline_score_save():
    """Assert that the TPOTClassifier can generate a scored pipeline export correctly."""
    tpot_obj = TPOTClassifier()
    tpot_obj._fit_init()
    tpot_obj._pbar = tqdm(total=1, disable=True)
    pipeline_string = (
        'DecisionTreeClassifier(SelectPercentile(input_matrix, SelectPercentile__percentile=20),'
        'DecisionTreeClassifier__criterion=gini, DecisionTreeClassifier__max_depth=8,'
        'DecisionTreeClassifier__min_samples_leaf=5, DecisionTreeClassifier__min_samples_split=5)'
    )
    pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    expected_code = """import numpy as np
import pandas as pd
from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeClassifier

# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
            train_test_split(features, tpot_data['target'].values, random_state=None)

# Average CV score on the training set was:0.929813743
exported_pipeline = make_pipeline(
    SelectPercentile(score_func=f_classif, percentile=20),
    DecisionTreeClassifier(criterion="gini", max_depth=8, min_samples_leaf=5, min_samples_split=5)
)

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
    assert_equal(expected_code, export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset, pipeline_score=0.929813743))
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:34,代碼來源:export_tests.py

示例5: test_mut_operator_stats_update

def test_mut_operator_stats_update():
    """Asserts that self._random_mutation_operator updates stats as expected."""
    tpot_obj = TPOTClassifier()
    ind = creator.Individual.from_string(
        'KNeighborsClassifier('
        'BernoulliNB(input_matrix, BernoulliNB__alpha=10.0, BernoulliNB__fit_prior=False),'
        'KNeighborsClassifier__n_neighbors=10, '
        'KNeighborsClassifier__p=1, '
        'KNeighborsClassifier__weights=uniform'
        ')',
        tpot_obj._pset
    )

    initialize_stats_dict(ind)

    ind.statistics["crossover_count"] = random.randint(0, 10)
    ind.statistics["mutation_count"] = random.randint(0, 10)

    # set as evaluated pipelines in tpot_obj.evaluated_individuals_
    tpot_obj.evaluated_individuals_[str(ind)] = tpot_obj._combine_individual_stats(2, 0.99, ind.statistics)

    for _ in range(10):
        offspring, = tpot_obj._random_mutation_operator(ind)

        assert offspring.statistics['crossover_count'] == ind.statistics['crossover_count']
        assert offspring.statistics['mutation_count'] == ind.statistics['mutation_count'] + 1
        assert offspring.statistics['predecessor'] == (str(ind),)

        ind = offspring
開發者ID:stenpiren,項目名稱:tpot,代碼行數:29,代碼來源:stats_test.py

示例6: test_fit

def test_fit():
    """Assert that the TPOT fit function provides an optimized pipeline"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, generations=1, verbosity=0)
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert tpot_obj._gp_generation == 0
    assert not (tpot_obj._start_datetime is None)
開發者ID:rhiever,項目名稱:tpot,代碼行數:8,代碼來源:tests.py

示例7: test_gen

def test_gen():
    """Assert that TPOT's gen_grow_safe function returns a pipeline of expected structure"""
    tpot_obj = TPOTClassifier()

    pipeline = tpot_obj._gen_grow_safe(tpot_obj._pset, 1, 3)

    assert len(pipeline) > 1
    assert pipeline[0].ret == Output_DF
開發者ID:rhiever,項目名稱:tpot,代碼行數:8,代碼來源:tests.py

示例8: test_export

def test_export():
    """Assert that TPOT's export function throws a ValueError when no optimized pipeline exists"""
    tpot_obj = TPOTClassifier()

    try:
        tpot_obj.export("test_export.py")
        assert False  # Should be unreachable
    except ValueError:
        pass
開發者ID:rhiever,項目名稱:tpot,代碼行數:9,代碼來源:tests.py

示例9: test_invaild_dataset_warning

def test_invaild_dataset_warning():
    """Assert that the TPOT fit function raises a ValueError when dataset is not in right format"""
    tpot_obj = TPOTClassifier(random_state=42, population_size=1, offspring_size=2, generations=1, verbosity=0)
    bad_training_classes = training_classes.reshape((1, len(training_classes)))# common mistake in classes
    try:
        tpot_obj.fit(training_features ,bad_training_classes) # typo for balanced_accuracy
        assert False
    except ValueError:
        pass
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:9,代碼來源:tests.py

示例10: test_predict

def test_predict():
    """Assert that the TPOT predict function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOTClassifier()

    try:
        tpot_obj.predict(testing_features)
        assert False  # Should be unreachable
    except ValueError:
        pass
開發者ID:rhiever,項目名稱:tpot,代碼行數:10,代碼來源:tests.py

示例11: test_score

def test_score():
    """Assert that the TPOT score function raises a RuntimeError when no optimized pipeline exists"""

    tpot_obj = TPOTClassifier()

    try:
        tpot_obj.score(testing_features, testing_classes)
        assert False  # Should be unreachable
    except RuntimeError:
        pass
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:10,代碼來源:tests.py

示例12: test_predict_2

def test_predict_2():
    """Assert that the TPOT predict function returns a numpy matrix of shape (num_testing_rows,)"""

    tpot_obj = TPOTClassifier()
    tpot_obj._optimized_pipeline = creator.Individual.\
        from_string('DecisionTreeClassifier(input_matrix)', tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict(testing_features)

    assert result.shape == (testing_features.shape[0],)
開發者ID:rhiever,項目名稱:tpot,代碼行數:12,代碼來源:tests.py

示例13: test_dict_initialization

def test_dict_initialization():
    """Asserts that gp_deap.initialize_stats_dict initializes individual statistics correctly"""
    tpot_obj = TPOTClassifier()
    tpot_obj._fit_init()
    tb = tpot_obj._toolbox

    test_ind = tb.individual()
    initialize_stats_dict(test_ind)

    assert test_ind.statistics['generation'] == 0
    assert test_ind.statistics['crossover_count'] == 0
    assert test_ind.statistics['mutation_count'] == 0
    assert test_ind.statistics['predecessor'] == ('ROOT',)
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:13,代碼來源:stats_test.py

示例14: test_imputer_in_export

def test_imputer_in_export():
    """Assert that TPOT exports a pipeline with an imputation step if imputation was used in fit()."""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0,
        config_dict='TPOT light'
    )
    features_with_nan = np.copy(training_features)
    features_with_nan[0][0] = float('nan')

    tpot_obj.fit(features_with_nan, training_target)
    # use fixed pipeline since the random.seed() performs differently in python 2.* and 3.*
    pipeline_string = (
        'KNeighborsClassifier('
        'input_matrix, '
        'KNeighborsClassifier__n_neighbors=10, '
        'KNeighborsClassifier__p=1, '
        'KNeighborsClassifier__weights=uniform'
        ')'
    )
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)

    export_code = export_pipeline(tpot_obj._optimized_pipeline, tpot_obj.operators, tpot_obj._pset, tpot_obj._imputed)

    expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import Imputer

# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
            train_test_split(features, tpot_data['target'].values, random_state=None)

imputer = Imputer(strategy="median")
imputer.fit(training_features)
training_features = imputer.transform(training_features)
testing_features = imputer.transform(testing_features)

exported_pipeline = KNeighborsClassifier(n_neighbors=10, p=1, weights="uniform")

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""

    assert_equal(export_code, expected_code)
開發者ID:EpistasisLab,項目名稱:tpot,代碼行數:51,代碼來源:export_tests.py

示例15: test_predict_2

def test_predict_2():
    """Assert that the TPOT predict function returns a numpy matrix of shape (num_testing_rows,)"""

    tpot_obj = TPOTClassifier()
    pipeline_string= ('DecisionTreeClassifier(input_matrix, DecisionTreeClassifier__criterion=gini'
    ', DecisionTreeClassifier__max_depth=8,DecisionTreeClassifier__min_samples_leaf=5,'
    'DecisionTreeClassifier__min_samples_split=5)')
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj._fitted_pipeline.fit(training_features, training_classes)

    result = tpot_obj.predict(testing_features)

    assert result.shape == (testing_features.shape[0],)
開發者ID:teaearlgraycold,項目名稱:tpot,代碼行數:14,代碼來源:tests.py


注:本文中的tpot.TPOTClassifier類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。