本文整理匯總了Python中tpot.TPOTClassifier._fit_init方法的典型用法代碼示例。如果您正苦於以下問題:Python TPOTClassifier._fit_init方法的具體用法?Python TPOTClassifier._fit_init怎麽用?Python TPOTClassifier._fit_init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tpot.TPOTClassifier
的用法示例。
在下文中一共展示了TPOTClassifier._fit_init方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_pipeline_score_save
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
def test_pipeline_score_save():
"""Assert that the TPOTClassifier can generate a scored pipeline export correctly."""
tpot_obj = TPOTClassifier()
tpot_obj._fit_init()
tpot_obj._pbar = tqdm(total=1, disable=True)
pipeline_string = (
'DecisionTreeClassifier(SelectPercentile(input_matrix, SelectPercentile__percentile=20),'
'DecisionTreeClassifier__criterion=gini, DecisionTreeClassifier__max_depth=8,'
'DecisionTreeClassifier__min_samples_leaf=5, DecisionTreeClassifier__min_samples_split=5)'
)
pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
expected_code = """import numpy as np
import pandas as pd
from sklearn.feature_selection import SelectPercentile, f_classif
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeClassifier
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'].values, random_state=None)
# Average CV score on the training set was:0.929813743
exported_pipeline = make_pipeline(
SelectPercentile(score_func=f_classif, percentile=20),
DecisionTreeClassifier(criterion="gini", max_depth=8, min_samples_leaf=5, min_samples_split=5)
)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
assert_equal(expected_code, export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset, pipeline_score=0.929813743))
示例2: test_mut_operator_stats_update
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
def test_mut_operator_stats_update():
"""Asserts that self._random_mutation_operator updates stats as expected."""
tpot_obj = TPOTClassifier()
tpot_obj._fit_init()
ind = creator.Individual.from_string(
'KNeighborsClassifier('
'BernoulliNB(input_matrix, BernoulliNB__alpha=10.0, BernoulliNB__fit_prior=False),'
'KNeighborsClassifier__n_neighbors=10, '
'KNeighborsClassifier__p=1, '
'KNeighborsClassifier__weights=uniform'
')',
tpot_obj._pset
)
initialize_stats_dict(ind)
ind.statistics["crossover_count"] = random.randint(0, 10)
ind.statistics["mutation_count"] = random.randint(0, 10)
# set as evaluated pipelines in tpot_obj.evaluated_individuals_
tpot_obj.evaluated_individuals_[str(ind)] = tpot_obj._combine_individual_stats(2, 0.99, ind.statistics)
for _ in range(10):
offspring, = tpot_obj._random_mutation_operator(ind)
assert offspring.statistics['crossover_count'] == ind.statistics['crossover_count']
assert offspring.statistics['mutation_count'] == ind.statistics['mutation_count'] + 1
assert offspring.statistics['predecessor'] == (str(ind),)
ind = offspring
示例3: test_dict_initialization
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
def test_dict_initialization():
"""Asserts that gp_deap.initialize_stats_dict initializes individual statistics correctly"""
tpot_obj = TPOTClassifier()
tpot_obj._fit_init()
tb = tpot_obj._toolbox
test_ind = tb.individual()
initialize_stats_dict(test_ind)
assert test_ind.statistics['generation'] == 0
assert test_ind.statistics['crossover_count'] == 0
assert test_ind.statistics['mutation_count'] == 0
assert test_ind.statistics['predecessor'] == ('ROOT',)
示例4: test_mate_operator_stats_update
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
def test_mate_operator_stats_update():
"""Assert that self._mate_operator updates stats as expected."""
tpot_obj = TPOTClassifier()
tpot_obj._fit_init()
ind1 = creator.Individual.from_string(
'KNeighborsClassifier('
'BernoulliNB(input_matrix, BernoulliNB__alpha=10.0, BernoulliNB__fit_prior=False),'
'KNeighborsClassifier__n_neighbors=10, '
'KNeighborsClassifier__p=1, '
'KNeighborsClassifier__weights=uniform'
')',
tpot_obj._pset
)
ind2 = creator.Individual.from_string(
'KNeighborsClassifier('
'BernoulliNB(input_matrix, BernoulliNB__alpha=10.0, BernoulliNB__fit_prior=True),'
'KNeighborsClassifier__n_neighbors=10, '
'KNeighborsClassifier__p=2, '
'KNeighborsClassifier__weights=uniform'
')',
tpot_obj._pset
)
initialize_stats_dict(ind1)
initialize_stats_dict(ind2)
# Randomly mutate the statistics
ind1.statistics["crossover_count"] = random.randint(0, 10)
ind1.statistics["mutation_count"] = random.randint(0, 10)
ind2.statistics["crossover_count"] = random.randint(0, 10)
ind2.statistics["mutation_count"] = random.randint(0, 10)
# set as evaluated pipelines in tpot_obj.evaluated_individuals_
tpot_obj.evaluated_individuals_[str(ind1)] = tpot_obj._combine_individual_stats(2, 0.99, ind1.statistics)
tpot_obj.evaluated_individuals_[str(ind2)] = tpot_obj._combine_individual_stats(2, 0.99, ind2.statistics)
# Doing 10 tests
for _ in range(10):
offspring1, offspring2 = tpot_obj._mate_operator(ind1, ind2)
assert offspring1.statistics['crossover_count'] == ind1.statistics['crossover_count'] + ind2.statistics['crossover_count'] + 1
assert offspring1.statistics['mutation_count'] == ind1.statistics['mutation_count'] + ind2.statistics['mutation_count']
assert offspring1.statistics['predecessor'] == (str(ind1), str(ind2))
# Offspring replaces on of the two predecessors
# Don't need to worry about cloning
if random.random() < 0.5:
ind1 = offspring1
else:
ind2 = offspring1
示例5: test_export_random_ind
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
def test_export_random_ind():
"""Assert that the TPOTClassifier can generate the same pipeline export with random seed of 39."""
tpot_obj = TPOTClassifier(random_state=39, config_dict="TPOT light")
tpot_obj._fit_init()
tpot_obj._pbar = tqdm(total=1, disable=True)
pipeline = tpot_obj._toolbox.individual()
expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \\
train_test_split(features, tpot_data['target'].values, random_state=39)
exported_pipeline = BernoulliNB(alpha=1.0, fit_prior=False)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
"""
assert expected_code == export_pipeline(pipeline, tpot_obj.operators, tpot_obj._pset, random_state=tpot_obj.random_state)
示例6: TPOTOperatorClassFactory
# 需要導入模塊: from tpot import TPOTClassifier [as 別名]
# 或者: from tpot.TPOTClassifier import _fit_init [as 別名]
TPOTSelectPercentile, TPOTSelectPercentile_args = TPOTOperatorClassFactory(
test_operator_key_1,
classifier_config_dict[test_operator_key_1]
)
TPOTSelectFromModel, TPOTSelectFromModel_args = TPOTOperatorClassFactory(
test_operator_key_2,
classifier_config_dict[test_operator_key_2]
)
mnist_data = load_digits()
training_features, testing_features, training_target, testing_target = \
train_test_split(mnist_data.data.astype(np.float64), mnist_data.target.astype(np.float64), random_state=42)
tpot_obj = TPOTClassifier()
tpot_obj._fit_init()
tpot_obj_reg = TPOTRegressor()
tpot_obj_reg._fit_init()
def test_export_random_ind():
"""Assert that the TPOTClassifier can generate the same pipeline export with random seed of 39."""
tpot_obj = TPOTClassifier(random_state=39, config_dict="TPOT light")
tpot_obj._fit_init()
tpot_obj._pbar = tqdm(total=1, disable=True)
pipeline = tpot_obj._toolbox.individual()
expected_code = """import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB