當前位置: 首頁>>代碼示例>>Python>>正文


Python Parameters.values方法代碼示例

本文整理匯總了Python中theano_toolkit.parameters.Parameters.values方法的典型用法代碼示例。如果您正苦於以下問題:Python Parameters.values方法的具體用法?Python Parameters.values怎麽用?Python Parameters.values使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano_toolkit.parameters.Parameters的用法示例。


在下文中一共展示了Parameters.values方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_train

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_train(input_size,output_size,mem_size,mem_width,hidden_sizes=[100]):
	P = Parameters()
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_sizes)
	predict = model.build(P,mem_size,mem_width,hidden_sizes[-1],ctrl)
	
	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
	seqs = predict(input_seq)
	output_seq_pred = seqs[-1]
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	params = P.values()
	l2 = T.sum(0)
	for p in params:
		l2 = l2 + (p ** 2).sum()
	cost = T.sum(cross_entropy) + 1e-4*l2
	grads  = [ T.clip(g,-10,10) for g in T.grad(cost,wrt=params) ]
	
	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=cost,
			# updates=updates.adadelta(params,grads)
			updates = updates.rmsprop(params,grads,learning_rate = 1e-5)
		)

	return P,train
開發者ID:chanhou,項目名稱:neural-turing-machines,代碼行數:27,代碼來源:train_copy.py

示例2: make_train

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_train(input_size,output_size,mem_size,mem_width,hidden_size=100):
	P = Parameters()

        # Build controller. ctrl is a network that takes an external and read input
        # and returns the output of the network and its hidden layer
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_size)

        # Build model that predicts output sequence given input sequence
	predict = model.build(P,mem_size,mem_width,hidden_size,ctrl)

	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
        [M,weights,output_seq_pred] = predict(input_seq)

        # Setup for adadelta updates
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	params = P.values()
	l2 = T.sum(0)
	for p in params:
		l2 = l2 + (p ** 2).sum()
	cost = T.sum(cross_entropy) + 1e-3*l2
        # clip gradients
	grads  = [ T.clip(g,-100,100) for g in T.grad(cost,wrt=params) ]

	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=cost,
			updates=updates.adadelta(params,grads)
		)

	return P,train
開發者ID:alee101,項目名稱:598c-project,代碼行數:33,代碼來源:train_copy.py

示例3: make_functions

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_functions(
        input_size, output_size, mem_size, mem_width, hidden_sizes=[100]):

    start_time = time.time()

    input_seqs  = T.btensor3('input_sequences')
    output_seqs = T.btensor3('output_sequences')

    P = Parameters()
    process = model.build(P,
            input_size, output_size, mem_size, mem_width, hidden_sizes[0])
    outputs = process(T.cast(input_seqs,'float32'))
    output_length = (input_seqs.shape[1] - 2) // 2

    Y = output_seqs[:,-output_length:,:-2]
    Y_hat = T.nnet.sigmoid(outputs[:,-output_length:,:-2])

    cross_entropy = T.mean(T.nnet.binary_crossentropy(Y_hat,Y))
    bits_loss = cross_entropy * (Y.shape[1] * Y.shape[2]) / T.log(2)

    params = P.values()

    cost = cross_entropy # + 1e-5 * sum(T.sum(T.sqr(w)) for w in params)

    print "Computing gradients",
    grads = T.grad(cost, wrt=params)
    grads = updates.clip_deltas(grads, np.float32(clip_length))

    print "Done. (%0.3f s)"%(time.time() - start_time)
    start_time = time.time()
    print "Compiling function",
    P_learn = Parameters()

    update_pairs = updates.rmsprop(
                params, grads,
                learning_rate=1e-4,
                P=P_learn
            )

    train = theano.function(
            inputs=[input_seqs, output_seqs],
            outputs=cross_entropy,
            updates=update_pairs,
        )

    test = theano.function(
            inputs=[input_seqs, output_seqs],
            outputs=bits_loss
        )

    print "Done. (%0.3f s)"%(time.time() - start_time)
    print P.parameter_count()
    return P, P_learn, train, test
開發者ID:shawntan,項目名稱:neural-turing-machines,代碼行數:55,代碼來源:train_copy.py

示例4: make_train_functions

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_train_functions():
    P = Parameters()
    X = T.bvector('X')
    Y = T.ivector('Y')
    aux = {}

    predict = model.build(
        P,
        input_size=128,
        embedding_size=64,
        controller_size=256,
        stack_size=256,
        output_size=128,
    )

    output = predict(X,aux=aux)
    error = - T.log(output[T.arange(Y.shape[0]),((128+1 + Y)%(128+1))])
    error = error[-(Y.shape[0]/2):]
    parameters = P.values()
    gradients = T.grad(T.sum(error),wrt=parameters)
    shapes = [ p.get_value().shape for p in parameters ]
    count = theano.shared(np.float32(0))
    acc_grads  = [
        theano.shared(np.zeros(s,dtype=np.float32))
        for s in shapes
    ]

    acc_update = [ (a,a+g) for a,g in zip(acc_grads,gradients) ] +\
                 [ (count,count + np.float32(1)) ]
    acc_clear = [ (a,np.float32(0) * a) for a in acc_grads ] +\
                [ (count,np.int32(0)) ]
    avg_grads = [ (g / count) for g in acc_grads ]
    avg_grads = [ clip(g,1) for g in acc_grads ]


    acc = theano.function(
            inputs=[X,Y],
            outputs=T.mean(error),
            updates = acc_update,
        )
    update = theano.function(
            inputs=[],
            updates=updates.adadelta(parameters,avg_grads,learning_rate=1e-8) + acc_clear
        )

    test = theano.function(
            inputs=[X],
            outputs=T.argmax(output,axis=1)[-(X.shape[0]/2):],
        )
    return acc,update,test
開發者ID:ml-lab,項目名稱:neural-transducers,代碼行數:52,代碼來源:train.py

示例5: build_network

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def build_network(input_size,hidden_size,constraint_adj=False):
	P = Parameters()
	X = T.bmatrix('X')
	
	P.W_input_hidden = U.initial_weights(input_size,hidden_size)
	P.b_hidden       = U.initial_weights(hidden_size)
	P.b_output       = U.initial_weights(input_size)
	hidden_lin = T.dot(X,P.W_input_hidden)+P.b_hidden
	hidden = T.nnet.sigmoid(hidden_lin)
	output = T.nnet.softmax(T.dot(hidden,P.W_input_hidden.T) + P.b_output)
	parameters = P.values() 
	cost = build_error(X,output,P) 
	if constraint_adj:pass
		#cost = cost + adjacency_constraint(hidden_lin)

	return X,output,cost,P
開發者ID:shawntan,項目名稱:viz-speech,代碼行數:18,代碼來源:order_constraint.py

示例6: make_train

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_train(input_size,output_size,mem_size,mem_width,hidden_sizes=[100]):
	P = Parameters()
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_sizes)
	predict = model.build(P,mem_size,mem_width,hidden_sizes[-1],ctrl)
	
	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
	seqs = predict(input_seq)
	output_seq_pred = seqs[-1]
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	cost = T.sum(cross_entropy) # + 1e-3 * l2
	params = P.values()
	grads  = [ T.clip(g,-100,100) for g in T.grad(cost,wrt=params) ]

	response_length = input_seq.shape[0]/2
	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=T.mean(cross_entropy[-response_length:]),
			updates=updates.adadelta(params,grads)
		)

	return P,train
開發者ID:FrictionlessCoin,項目名稱:neural-turing-machines,代碼行數:24,代碼來源:train_copy.py

示例7: make_train

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
def make_train(image_size , word_size , first_hidden_size , proj_size , reg_lambda) :
    #initialize model
    P = Parameters()
    image_projecting = image_project.build(P, image_size, proj_size)
    batched_triplet_encoding , vector_triplet_encoding = triplet_encoding.build(P , word_size , first_hidden_size , proj_size)   

    image_vector = T.vector()

    #training
    correct_triplet =  [T.vector(dtype='float32') , T.vector(dtype='float32') , T.vector(dtype='float32')] #[E,R,E]
    negative_triplet = [T.matrix(dtype='float32') , T.matrix(dtype='float32') , T.matrix(dtype='float32')]

    image_projection_vector = image_projecting(image_vector)
    image_projection_matrix = repeat(image_projection_vector.dimshuffle(('x',0)) , negative_triplet[0].shape[0] , axis=0)
    correct_triplet_encoding_vector = vector_triplet_encoding(correct_triplet[0] , correct_triplet[1] , correct_triplet[2])
    negative_triplet_encoding_matrix = batched_triplet_encoding(negative_triplet[0] , negative_triplet[1] , negative_triplet[2])

    correct_cross_dot_scalar = T.dot(image_projection_vector , correct_triplet_encoding_vector)
    negative_cross_dot_vector = T.batched_dot(image_projection_matrix , negative_triplet_encoding_matrix)

    #margin cost
    zero_cost = T.zeros_like(negative_cross_dot_vector)
    margin_cost = 1 - correct_cross_dot_scalar + negative_cross_dot_vector
    cost_vector = T.switch(T.gt(zero_cost , margin_cost) , zero_cost , margin_cost)

    #regulizar cost
    params = P.values()
    l2 = T.sum(0)
    for p in params:
        l2 = l2 + (p ** 2).sum()        
    cost = T.sum(cost_vector)/T.shape(negative_triplet[0])[0] + reg_lambda * l2 #assume word vector has been put into P #unsolved
    grads = [T.clip(g, -100, 100) for g in T.grad(cost, wrt=params)]

    lr = T.scalar(name='learning rate',dtype='float32')
    train = theano.function(
        inputs=[image_vector, correct_triplet[0], correct_triplet[1], correct_triplet[2], negative_triplet[0], negative_triplet[1], negative_triplet[2], lr],
        outputs=cost,
        updates=updates.rmsprop(params, grads, learning_rate=lr),
        allow_input_downcast=True
    )

    #valid
    valid = theano.function(
        inputs=[image_vector, correct_triplet[0], correct_triplet[1], correct_triplet[2], negative_triplet[0], negative_triplet[1], negative_triplet[2]],
        outputs=cost,
        allow_input_downcast=True

    )
    #visualize
    image_project_fun = theano.function(
        inputs=[image_vector],
        outputs=image_projection_vector,
        allow_input_downcast=True
    )
    #testing
    all_triplet = [T.matrix(dtype='float32') , T.matrix(dtype='float32') , T.matrix(dtype='float32')]
    image_projection_matrix_test = repeat(image_projection_vector.dimshuffle(('x',0)) , all_triplet[0].shape[0] , axis=0)
    all_triplet_encoding_matrix = batched_triplet_encoding(all_triplet[0] , all_triplet[1] , all_triplet[2])
    all_cross_dot_vector = T.batched_dot(image_projection_matrix_test , all_triplet_encoding_matrix)

    test = theano.function(
        inputs=[image_vector, all_triplet[0], all_triplet[1], all_triplet[2]],
        outputs=all_cross_dot_vector,
        allow_input_downcast=True

    )

    return P , train , valid , image_project_fun , test
開發者ID:darongliu,項目名稱:Cross_Modal_Projection,代碼行數:70,代碼來源:train.py

示例8: attention

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
				vocab_size  = vocab_size,
				output_size = vocab_size,
				map_fun_size = 128,
				evidence_count = evidence_count
				)

		output_evds,output_ans = attention(story,idxs,qstn)
		cross_entropy = -T.log(output_ans[ans_lbl]) \
				+ -T.log(output_evds[0][ans_evds[0]]) \
				+ -T.log(output_evds[1][ans_evds[1]]) 
		#cost += -T.log(ordered_probs(output_evds,ans_e.vds)) 
		print "Done."
		print "Parameter count:", P.parameter_count()

		print "Calculating gradient expression...",
		params = P.values()
		cost = cross_entropy
		grads = T.grad(cost,wrt=params)
		print "Done."

		inputs = [story,idxs,qstn,ans_lbl,ans_evds]
		outputs = cross_entropy
		pickle.dump(
				(inputs,outputs,params,grads),
				open("compute_tree.pkl","wb"),2
				)

		print "Compiling native...",
	lr = T.fscalar('lr')
	acc,update = make_functions(inputs,outputs,params,grads,lr)
	test = theano.function(
開發者ID:wavelets,項目名稱:neural-qa,代碼行數:33,代碼來源:train.py

示例9: sum

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
        return T.nnet.categorical_crossentropy(outputs,Y)



if __name__ == "__main__":
    config.parse_args()
    total_frames = sum(x.shape[0] for x,_ in frame_label_data.training_stream())
    logging.info("Total frames: %d"%total_frames)
    P = Parameters()
    predict = model.build(P)

    X = T.matrix('X')
    Y = T.ivector('Y')
    _,outputs = predict(X)
    cross_entropy = T.mean(crossentropy(outputs,Y))
    parameters = P.values() 
    loss = cross_entropy + \
            (0.5/total_frames) * sum(T.sum(T.sqr(w)) for w in parameters)

    gradients = T.grad(loss,wrt=parameters)
    logging.info("Parameters to tune:" + ', '.join(sorted(w.name for w in parameters)))

    update_vars = Parameters()
    logging.debug("Compiling functions...")    
    chunk_trainer = chunk.build_trainer(
            inputs=[X,Y],
            updates = build_updates(parameters,gradients,update_vars)
        )

    validate = validator.build(
            inputs=[X,Y],
開發者ID:wbgxx333,項目名稱:theano-kaldi,代碼行數:33,代碼來源:train.py

示例10: numbers

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
    # TODO: fix these magic numbers (especially the 800)
    def f(X):
        layer0 = X.reshape((X.shape[0], 1, 28, 28))
        layer1 = _build_conv_pool(P, 1, layer0, 20,  1, 5, 2)
        layer2_= _build_conv_pool(P, 2, layer1, 50, 20, 5, 2)
        layer2 = layer2_.flatten(2)
        output = T.nnet.softmax(T.dot(layer2, P.W_hidden_output) + P.b_output)
        return output

    return f

def cost(P, Y_hat, Y, l2 = 0):
    return (T.mean(T.nnet.categorical_crossentropy(Y_hat, Y)) +
           l2 * sum(T.mean(p**2) for p in P.values()))

if __name__ == "__main__":
    import datasets
    x,y = datasets.mnist()
    x,y = x[0:1000],y[0:1000]

    P = Parameters()
    X = T.matrix('X')
    Y = T.ivector('Y')
    net = build(P, 784, 800, 10)
    Y_hat = net(X)
    
    f = theano.function(inputs = [X], outputs = Y_hat)
    J = cost(P, Y_hat, Y)
    grad = T.grad(J, wrt=P.values())
開發者ID:jeffiar,項目名稱:theano-learn,代碼行數:31,代碼來源:lenet_model.py

示例11: __init__

# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import values [as 別名]
    def __init__(self, 
                 input_size, output_size, mem_size, mem_width, hidden_sizes, num_heads,
                 max_epochs, momentum, learning_rate ,grad_clip, l2_norm):
        
        self.input_size = input_size
        self.output_size = output_size
        self.mem_size = mem_size
        self.mem_width = mem_width
        self.hidden_sizes = hidden_sizes
        self.num_heads = num_heads
        self.max_epochs = max_epochs
        self.momentum = momentum
        self.learning_rate = learning_rate
        self.grad_clip = grad_clip
        self.l2_norm = l2_norm
        
        self.best_train_cost = np.inf
        self.best_valid_cost = np.inf
        #self.train = None
        #self.cost = None
        
        self.train_his = []
        
        P = Parameters()
        ctrl = controller.build( P, self.input_size, self.output_size, self.mem_size, self.mem_width, self.hidden_sizes)
        predict = model.build( P, self.mem_size, self.mem_width, self.hidden_sizes[-1], ctrl, self.num_heads)

        input_seq = T.matrix('input_sequence')
        output_seq = T.matrix('output_sequence')
        
        [M_curr,weights,output] = predict(input_seq)
        # output_seq_pred = seqs[-1]
        
        cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output, output_seq),axis=1)
        
        self.params = P.values()
        
        l2 = T.sum(0)
        for p in self.params:
            l2 = l2 + (p ** 2).sum()
            
        cost = T.sum(cross_entropy) + self.l2_norm * l2
    #     cost = T.sum(cross_entropy) + 1e-3*l2
        
        grads  = [ T.clip(g, grad_clip[0], grad_clip[1]) for g in T.grad(cost, wrt=self.params) ]
    #     grads  = [ T.clip(g,-100,100) for g in T.grad(cost,wrt=params) ]
    #     grads  = [ T.clip(g,1e-9, 0.2) for g in T.grad(cost,wrt=params) ]

        self.train = theano.function(
                inputs=[input_seq,output_seq],
                outputs=cost,
    #             updates=updates.adadelta(params,grads)
                updates = updates.rmsprop(self.params, grads, momentum=self.momentum, learning_rate=self.learning_rate )
            )
        
        self.predict_cost = theano.function(
            inputs=[input_seq,output_seq],
            outputs= cost
        )
        
        self.predict = theano.function(
            inputs=[input_seq],
            outputs= [ weights, output]
        )
開發者ID:c3h3,項目名稱:pyntm,代碼行數:66,代碼來源:ntm.py


注:本文中的theano_toolkit.parameters.Parameters.values方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。