當前位置: 首頁>>代碼示例>>Python>>正文


Python parameters.Parameters類代碼示例

本文整理匯總了Python中theano_toolkit.parameters.Parameters的典型用法代碼示例。如果您正苦於以下問題:Python Parameters類的具體用法?Python Parameters怎麽用?Python Parameters使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Parameters類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

def create_model(ids,vocab2id,size):
	word_vector_size  = size
	hidden_state_size = size
	
	P = Parameters()
	P.V = create_vocab_vectors(P,vocab2id,word_vector_size)
	P.W_predict = np.zeros(P.V.get_value().shape).T
	P.b_predict = np.zeros((P.V.get_value().shape[0],))
	X = P.V[ids]

	step = build_lstm_step(P,word_vector_size,hidden_state_size)

	[states,_],_ = theano.scan(
			step,
			sequences    = [X],
			outputs_info = [P.init_h,P.init_c]
		)

	scores = T.dot(states,P.W_predict) + P.b_predict
	scores = T.nnet.softmax(scores)

	log_likelihood, cross_ent = word_cost(scores[:-1],ids[1:])
	cost = log_likelihood #+ 1e-4 * sum( T.sum(abs(w)) for w in P.values() )
	obv_cost = cross_ent
	return scores, cost, obv_cost, P
開發者ID:andersonhaynes,項目名稱:theano-nlp-1,代碼行數:25,代碼來源:lstm_lang_model.py

示例2: make_train

def make_train(input_size,output_size,mem_size,mem_width,hidden_sizes=[100]):
	P = Parameters()
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_sizes)
	predict = model.build(P,mem_size,mem_width,hidden_sizes[-1],ctrl)
	
	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
	seqs = predict(input_seq)
	output_seq_pred = seqs[-1]
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	params = P.values()
	l2 = T.sum(0)
	for p in params:
		l2 = l2 + (p ** 2).sum()
	cost = T.sum(cross_entropy) + 1e-4*l2
	grads  = [ T.clip(g,-10,10) for g in T.grad(cost,wrt=params) ]
	
	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=cost,
			# updates=updates.adadelta(params,grads)
			updates = updates.rmsprop(params,grads,learning_rate = 1e-5)
		)

	return P,train
開發者ID:chanhou,項目名稱:neural-turing-machines,代碼行數:25,代碼來源:train_copy.py

示例3: make_train

def make_train(input_size,output_size,mem_size,mem_width,hidden_size=100):
	P = Parameters()

        # Build controller. ctrl is a network that takes an external and read input
        # and returns the output of the network and its hidden layer
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_size)

        # Build model that predicts output sequence given input sequence
	predict = model.build(P,mem_size,mem_width,hidden_size,ctrl)

	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
        [M,weights,output_seq_pred] = predict(input_seq)

        # Setup for adadelta updates
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	params = P.values()
	l2 = T.sum(0)
	for p in params:
		l2 = l2 + (p ** 2).sum()
	cost = T.sum(cross_entropy) + 1e-3*l2
        # clip gradients
	grads  = [ T.clip(g,-100,100) for g in T.grad(cost,wrt=params) ]

	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=cost,
			updates=updates.adadelta(params,grads)
		)

	return P,train
開發者ID:alee101,項目名稱:598c-project,代碼行數:31,代碼來源:train_copy.py

示例4: make_functions

def make_functions(
        input_size, output_size, mem_size, mem_width, hidden_sizes=[100]):

    start_time = time.time()

    input_seqs  = T.btensor3('input_sequences')
    output_seqs = T.btensor3('output_sequences')

    P = Parameters()
    process = model.build(P,
            input_size, output_size, mem_size, mem_width, hidden_sizes[0])
    outputs = process(T.cast(input_seqs,'float32'))
    output_length = (input_seqs.shape[1] - 2) // 2

    Y = output_seqs[:,-output_length:,:-2]
    Y_hat = T.nnet.sigmoid(outputs[:,-output_length:,:-2])

    cross_entropy = T.mean(T.nnet.binary_crossentropy(Y_hat,Y))
    bits_loss = cross_entropy * (Y.shape[1] * Y.shape[2]) / T.log(2)

    params = P.values()

    cost = cross_entropy # + 1e-5 * sum(T.sum(T.sqr(w)) for w in params)

    print "Computing gradients",
    grads = T.grad(cost, wrt=params)
    grads = updates.clip_deltas(grads, np.float32(clip_length))

    print "Done. (%0.3f s)"%(time.time() - start_time)
    start_time = time.time()
    print "Compiling function",
    P_learn = Parameters()

    update_pairs = updates.rmsprop(
                params, grads,
                learning_rate=1e-4,
                P=P_learn
            )

    train = theano.function(
            inputs=[input_seqs, output_seqs],
            outputs=cross_entropy,
            updates=update_pairs,
        )

    test = theano.function(
            inputs=[input_seqs, output_seqs],
            outputs=bits_loss
        )

    print "Done. (%0.3f s)"%(time.time() - start_time)
    print P.parameter_count()
    return P, P_learn, train, test
開發者ID:shawntan,項目名稱:neural-turing-machines,代碼行數:53,代碼來源:train_copy.py

示例5: make_train_functions

def make_train_functions():
    P = Parameters()
    X = T.bvector('X')
    Y = T.ivector('Y')
    aux = {}

    predict = model.build(
        P,
        input_size=128,
        embedding_size=64,
        controller_size=256,
        stack_size=256,
        output_size=128,
    )

    output = predict(X,aux=aux)
    error = - T.log(output[T.arange(Y.shape[0]),((128+1 + Y)%(128+1))])
    error = error[-(Y.shape[0]/2):]
    parameters = P.values()
    gradients = T.grad(T.sum(error),wrt=parameters)
    shapes = [ p.get_value().shape for p in parameters ]
    count = theano.shared(np.float32(0))
    acc_grads  = [
        theano.shared(np.zeros(s,dtype=np.float32))
        for s in shapes
    ]

    acc_update = [ (a,a+g) for a,g in zip(acc_grads,gradients) ] +\
                 [ (count,count + np.float32(1)) ]
    acc_clear = [ (a,np.float32(0) * a) for a in acc_grads ] +\
                [ (count,np.int32(0)) ]
    avg_grads = [ (g / count) for g in acc_grads ]
    avg_grads = [ clip(g,1) for g in acc_grads ]


    acc = theano.function(
            inputs=[X,Y],
            outputs=T.mean(error),
            updates = acc_update,
        )
    update = theano.function(
            inputs=[],
            updates=updates.adadelta(parameters,avg_grads,learning_rate=1e-8) + acc_clear
        )

    test = theano.function(
            inputs=[X],
            outputs=T.argmax(output,axis=1)[-(X.shape[0]/2):],
        )
    return acc,update,test
開發者ID:ml-lab,項目名稱:neural-transducers,代碼行數:50,代碼來源:train.py

示例6: build_network

def build_network(input_size,hidden_size,constraint_adj=False):
	P = Parameters()
	X = T.bmatrix('X')
	
	P.W_input_hidden = U.initial_weights(input_size,hidden_size)
	P.b_hidden       = U.initial_weights(hidden_size)
	P.b_output       = U.initial_weights(input_size)
	hidden_lin = T.dot(X,P.W_input_hidden)+P.b_hidden
	hidden = T.nnet.sigmoid(hidden_lin)
	output = T.nnet.softmax(T.dot(hidden,P.W_input_hidden.T) + P.b_output)
	parameters = P.values() 
	cost = build_error(X,output,P) 
	if constraint_adj:pass
		#cost = cost + adjacency_constraint(hidden_lin)

	return X,output,cost,P
開發者ID:shawntan,項目名稱:viz-speech,代碼行數:16,代碼來源:order_constraint.py

示例7: make_train

def make_train(input_size,output_size,mem_size,mem_width,hidden_sizes=[100]):
	P = Parameters()
	ctrl = controller.build(P,input_size,output_size,mem_size,mem_width,hidden_sizes)
	predict = model.build(P,mem_size,mem_width,hidden_sizes[-1],ctrl)
	
	input_seq = T.matrix('input_sequence')
	output_seq = T.matrix('output_sequence')
	seqs = predict(input_seq)
	output_seq_pred = seqs[-1]
	cross_entropy = T.sum(T.nnet.binary_crossentropy(5e-6 + (1 - 2*5e-6)*output_seq_pred,output_seq),axis=1)
	cost = T.sum(cross_entropy) # + 1e-3 * l2
	params = P.values()
	grads  = [ T.clip(g,-100,100) for g in T.grad(cost,wrt=params) ]

	response_length = input_seq.shape[0]/2
	train = theano.function(
			inputs=[input_seq,output_seq],
			outputs=T.mean(cross_entropy[-response_length:]),
			updates=updates.adadelta(params,grads)
		)

	return P,train
開發者ID:FrictionlessCoin,項目名稱:neural-turing-machines,代碼行數:22,代碼來源:train_copy.py

示例8: __init__

	def __init__(self, hidden_size, input_size, vocab_size, entropy_reg = 0.001, key_entropy_reg = 0.001, stack_size=1, celltype=LSTM):

		# core layer in RNN/LSTM
		self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)

		# add an embedding
		self.model.layers.insert(0, Embedding(vocab_size, input_size))

		# add a classifier:
		self.model.layers.append(Layer(hidden_size, vocab_size, activation = softmax))

		self.entropy_reg     = entropy_reg
		self.key_entropy_reg = key_entropy_reg

		self.turing_params = Parameters()
		#init turing machine model
		self.turing_updates , self.turing_predict = turing_model.build(self.turing_params , hidden_size , vocab_size)
		self.hidden_size = hidden_size         
		# inputs are matrices of indices,
		# each row is a sentence, each column a timestep
		self._stop_word   = theano.shared(np.int32(999999999), name="stop word")
		self.for_how_long = T.ivector()
		self.mask_matrix = T.imatrix()
		self.input_mat = T.imatrix()
		self.priming_word = T.iscalar()
		self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))

		# create symbolic variables for prediction:
		#change by darong #issue : what is greedy
		self.lstm_predictions = self.create_lstm_prediction()
		self.final_predictions,self.entropy,self.key_entropy = self.create_final_prediction()

		# create symbolic variable for greedy search:
		self.greedy_predictions = self.create_lstm_prediction(greedy=True)

		# create gradient training functions:
		self.create_cost_fun()#create 2 cost func(lstm final)

		self.lstm_lr = 0.01
		self.turing_lr = 0.01
		self.all_lr = 0.01
		self.create_training_function()#create 3 functions(lstm turing all)
		self.create_predict_function()#create 2 predictions(lstm final)

		# create ppl
		self.lstm_ppl = self.create_lstm_ppl()
		self.final_ppl = self.create_final_ppl()
		self.create_ppl_function()
開發者ID:darongliu,項目名稱:Lstm_Turing_LM,代碼行數:48,代碼來源:lm_v4.py

示例9: Parameters

		in_gate      = T.nnet.sigmoid(in_lin)
		forget_gate  = T.nnet.sigmoid(forget_lin)
		cell_updates = T.tanh(cell_lin)

		cell = forget_gate * prev_cell + in_gate * cell_updates

		out_lin = x_o + h_o + b_o + T.dot(cell,V_o)
		out_gate = T.nnet.sigmoid(out_lin)

		hid = out_gate * T.tanh(cell)
		return cell,hid
	return step


if __name__ == "__main__":
	P = Parameters()
	X = T.ivector('X')
	P.V = np.zeros((8,8),dtype=np.int32)

	X_rep = P.V[X]
	P.W_output = np.zeros((15,8),dtype=np.int32)
	lstm_layer = build(P,
			name = "test",
			input_size = 8,
			hidden_size =15 
		)

	_,hidden = lstm_layer(X_rep)
	output = T.nnet.softmax(T.dot(hidden,P.W_output))
	delay = 5
	label = X[:-delay]
開發者ID:wavelets,項目名稱:neural-qa,代碼行數:31,代碼來源:lstm.py

示例10: Parameters

import theano
import theano.tensor as T
import numpy as np

import vocab
import model
from theano_toolkit.parameters import Parameters

if __name__ == "__main__":
    model_file = args.model_file
    temp_input = args.temperature
    id2char = pickle.load(args.vocab_file)
    char2id = vocab.load(args.vocab_file.name)
    prime_str = args.prime

    P = Parameters()
    sampler = model.build_sampler(P,
                                  character_count=len(char2id) + 1,
                                  embedding_size=20,
                                  hidden_size=100
                                  )
    P.load(model_file)
    temp = T.scalar('temp')
    char = T.iscalar('char')
    p_cell_1, p_hidden_1, p_cell_2, p_hidden_2 = T.vector("p_cell_1"), T.vector("p_hidden_2"), T.vector("p_cell_2"), T.vector("p_hidden_2")

    output, cell_1, hidden_1, cell_2, hidden_2 = sampler(temp, char, p_cell_1, p_hidden_1, p_cell_2, p_hidden_2)
    sample = theano.function(
        inputs=[temp, char, p_cell_1, p_hidden_1, p_cell_2, p_hidden_2],
        outputs=[output, cell_1, hidden_1, cell_2, hidden_2]
    )
開發者ID:OlafLee,項目名稱:theano-nlp,代碼行數:31,代碼來源:sample.py

示例11: label_seq

    predict = T.nnet.softmax(T.dot(hidden, W_hidden_output) + b_output)

    return X, predict


def label_seq(string):
    idxs = font.indexify(string)
    result = np.ones((len(idxs) * 2 + 1,), dtype=np.int32) * -1
    result[np.arange(len(idxs)) * 2 + 1] = idxs
    print result
    return result


if __name__ == "__main__":
    P = Parameters()
    X = T.matrix('X')
    Y = T.ivector('Y')
    X, predict = build_model(P, X, 10, 10, 10)

    cost = ctc.cost(predict, Y)
    params = P.values()
    grad = T.grad(cost, wrt=params)
    train = theano.function(
        inputs=[X, Y],
        outputs=cost,
        updates=updates.adadelta(params, grad)
    )

    for _ in xrange(10):
        print train(np.eye(10, dtype=np.float32)[::-1], np.arange(10, dtype=np.int32))
開發者ID:Duum,項目名稱:theano-ctc,代碼行數:30,代碼來源:toy.py

示例12: Parameters

import theano
import theano.tensor as T
import numpy as np
import sys

import data
import model
from theano_toolkit.parameters import Parameters
from theano_toolkit import updates


if __name__ == '__main__':
    model_filename = sys.argv[1]
    test_filename = sys.argv[2]
    train_filename = sys.argv[3]
    P = Parameters()
    data_X, df = data.load_test(test_filename, train_filename)
    f = model.build(P,
        input_size=data_X.shape[1],
        hidden_sizes=[256, 128, 64, 32]
    )
    X = T.matrix('X')
    predict = theano.function(
        inputs=[X],
        outputs=f(X, test=True) > 0.5,
    )
    P.load(model_filename)
    output = predict(data_X) 
    print data_X.shape
    print output.shape
    print df.values.shape
開發者ID:shawntan,項目名稱:higgs-boson,代碼行數:31,代碼來源:predict.py

示例13: model

    P.W_output = np.zeros((hidden_size,output_size))
    P.b_output = np.zeros((output_size,))

    def model(X):
        hidden = lstm_layer(X)[1]
        return T.nnet.softmax(T.dot(hidden,P.W_output) + P.b_output)
    return model


def label_seq(string):
    idxs = font.indexify(string)
    return idxs 


if __name__ == "__main__":
    P = Parameters()
    X = T.matrix('X')
    Y = T.ivector('Y')

    predict = build_model(P,8,512,len(font.chars)+1)


    probs = predict(X)
    alpha = 0.5
    params = P.values()
    cost = ctc.cost(probs, Y) #+ 1e-8 * sum(T.sum(T.sqr(w)) for w in params)
    gradients = T.grad(cost, wrt=params)

    gradient_acc = [ theano.shared(0 * p.get_value()) for p in params ]
    counter = theano.shared(np.float32(0.))
    acc = theano.function(
開發者ID:Duum,項目名稱:theano-ctc,代碼行數:31,代碼來源:ocr.py

示例14: Parameters

        forget_gate = T.nnet.sigmoid(forget_lin)
        cell_updates = T.tanh(cell_lin)

        cell = forget_gate * prev_cell + in_gate * cell_updates

        out_lin = x_o + h_o + b_o + T.dot(cell, V_o)
        out_gate = T.nnet.sigmoid(out_lin)

        hid = out_gate * T.tanh(cell)
        return cell, hid

    return step


if __name__ == "__main__":
    P = Parameters()
    X = T.ivector("X")
    P.V = np.zeros((8, 8), dtype=np.int32)

    X_rep = P.V[X]
    P.W_output = np.zeros((15, 8), dtype=np.int32)
    lstm_layer = build(P, name="test", input_size=8, hidden_size=15)

    _, hidden = lstm_layer(X_rep)
    output = T.nnet.softmax(T.dot(hidden, P.W_output))
    delay = 5
    label = X[:-delay]
    predicted = output[delay:]

    cost = -T.sum(T.log(predicted[T.arange(predicted.shape[0]), label]))
    params = P.values()
開發者ID:ml-lab,項目名稱:neural-transducers,代碼行數:31,代碼來源:lstm.py

示例15: numbers

    # TODO: fix these magic numbers (especially the 800)
    def f(X):
        layer0 = X.reshape((X.shape[0], 1, 28, 28))
        layer1 = _build_conv_pool(P, 1, layer0, 20,  1, 5, 2)
        layer2_= _build_conv_pool(P, 2, layer1, 50, 20, 5, 2)
        layer2 = layer2_.flatten(2)
        output = T.nnet.softmax(T.dot(layer2, P.W_hidden_output) + P.b_output)
        return output

    return f

def cost(P, Y_hat, Y, l2 = 0):
    return (T.mean(T.nnet.categorical_crossentropy(Y_hat, Y)) +
           l2 * sum(T.mean(p**2) for p in P.values()))

if __name__ == "__main__":
    import datasets
    x,y = datasets.mnist()
    x,y = x[0:1000],y[0:1000]

    P = Parameters()
    X = T.matrix('X')
    Y = T.ivector('Y')
    net = build(P, 784, 800, 10)
    Y_hat = net(X)
    
    f = theano.function(inputs = [X], outputs = Y_hat)
    J = cost(P, Y_hat, Y)
    grad = T.grad(J, wrt=P.values())
開發者ID:jeffiar,項目名稱:theano-learn,代碼行數:29,代碼來源:lenet_model.py


注:本文中的theano_toolkit.parameters.Parameters類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。