本文整理匯總了Python中theano_toolkit.parameters.Parameters.save方法的典型用法代碼示例。如果您正苦於以下問題:Python Parameters.save方法的具體用法?Python Parameters.save怎麽用?Python Parameters.save使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano_toolkit.parameters.Parameters
的用法示例。
在下文中一共展示了Parameters.save方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
class Model:
"""
Simple predictive model for forecasting words from
sequence using LSTMs. Choose how many LSTMs to stack
what size their memory should be, and how many
words can be predicted.
"""
def __init__(self, hidden_size, input_size, vocab_size, stack_size=1, celltype=LSTM):
# core layer in RNN/LSTM
self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
# add an embedding
self.model.layers.insert(0, Embedding(vocab_size, input_size))
# add a classifier:
self.model.layers.append(Layer(hidden_size, vocab_size, activation = softmax))
self.turing_params = Parameters()
#init turing machine model
self.turing_updates , self.turing_predict = turing_model.build(self.turing_params , hidden_size , vocab_size)
# inputs are matrices of indices,
# each row is a sentence, each column a timestep
self._stop_word = theano.shared(np.int32(999999999), name="stop word")
self.for_how_long = T.ivector()
self.input_mat = T.imatrix()
self.priming_word = T.iscalar()
self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
# create symbolic variables for prediction:
#change by darong #issue : what is greedy
self.lstm_predictions = self.create_lstm_prediction()
self.final_predictions = self.create_final_prediction()
# create symbolic variable for greedy search:
self.greedy_predictions = self.create_lstm_prediction(greedy=True)
# create gradient training functions:
self.create_cost_fun()#create 2 cost func(lstm final)
self.lstm_lr = 0.01
self.turing_lr = 0.01
self.all_lr = 0.01
self.create_training_function()#create 3 functions(lstm turing all)
self.create_predict_function()#create 2 predictions(lstm final)
# create ppl
self.lstm_ppl = self.create_lstm_ppl()
self.final_ppl = self.create_final_ppl()
self.create_ppl_function()
def save(self, save_file, vocab):
pickle.dump(self.model, open(save_file, "wb")) # pickle is for lambda function, cPickle cannot
pickle.dump(vocab, open(save_file+'.vocab', "wb")) # pickle is for lambda function, cPickle cannot
def save_turing(self, save_file):
self.turing_params.save(save_file + '.turing')
def load(self, load_file, lr):
self.model = pickle.load(open(load_file, "rb"))
if os.path.isfile(load_file + '.turing') :
self.turing_params.load(load_file + '.turing')
else :
print "no turing model!!!! pretrain with lstm param"
self.turing_params['W_input_hidden'] = self.model.layers[-1].params[0].get_value().T #not sure
self.turing_params['W_read_hidden'] = self.model.layers[-1].params[0].get_value().T
self.turing_params['b_hidden_0'] = self.model.layers[-1].params[1].get_value()
temp = self.model.layers[1].initial_hidden_state.get_value()[self.hidden_size:]
self.turing_params['memory_init'] = temp.reshape((1,)+temp.shape)
# need to compile again for calculating predictions after loading lstm
self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
self.lstm_predictions = self.create_lstm_prediction()
self.final_predictions = self.create_final_prediction()
self.greedy_predictions = self.create_lstm_prediction(greedy=True)#can change to final
self.create_cost_fun()#create 2 cost func(lstm final)
self.lstm_lr = lr
self.turing_lr = lr#change this
self.all_lr = lr
self.create_training_function()#create 3 functions(lstm turing all)
self.create_predict_function()#create 2 predictions(lstm final)
self.lstm_ppl = self.create_lstm_ppl()
self.final_ppl = self.create_final_ppl()
self.create_ppl_function()
print "done loading model"
# print "done compile"
def stop_on(self, idx):
self._stop_word.set_value(idx)
@property
def params(self):
return self.model.params
def create_lstm_prediction(self, greedy=False):
def step(idx, *states):
# new hiddens are the states we need to pass to LSTMs
#.........這裏部分代碼省略.........
示例2: islice
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
test_group_answers = islice(group_answers,test_instance_count)
test_data = data_io.story_question_answer_idx(
test_group_answers,
vocab_in
)
test_data = ( x for x in test_data if x[1].shape[0] <= length_limit )
tests = [ np.array(
test(input_data,idxs,question_data,ans_w,ans_evds),
dtype=np.float32
)
for input_data,idxs,question_data,ans_w,ans_evds in test_data ]
errors = sum(tests)/len(tests)
print "Error rate:",errors
print "Starting epoch ",epoch
if errors < best_error * 0.9 :
P.save('model.pkl')
print "Wrote model."
best_error = errors
length_limit += 2
else:
# learning_rate = learning_rate / 2
# batch_size = max(1,batch_size//2)
# print "Learning rate:",learning_rate
P.save('tmp.model.pkl')
buffer_size = 256 / batch_size
train_group_answers = data_io.randomise(group_answers)
training_data = data_io.story_question_answer_idx(train_group_answers,vocab_in)
training_data = ( x for x in training_data if x[1].shape[0] <= length_limit )
training_data = data_io.sortify(training_data,key=lambda x:x[1].shape[0])
batched_training_data = data_io.batch(
示例3: zip
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
acc = theano.function(
inputs=[X, Y],
outputs=cost,
updates = [
(a,a + g) for a,g in zip(gradient_acc,gradients)
] + [(counter,counter + np.float32(1.))]
)
update = theano.function(
inputs=[],outputs=[],
updates = updates.momentum(params,[ g / counter for g in gradient_acc ]) \
+ [ (a, np.float32(0) * a) for a in gradient_acc ] \
+ [ (counter,np.float32(0.)) ]
)
test = theano.function(
inputs=[X,Y],
outputs=probs[:,Y]
)
training_examples = [ word.strip() for word in open('dictionary.txt') ]
import random
for _ in xrange(1500):
random.shuffle(training_examples)
for i,string in enumerate(training_examples):
print acc(font.imagify(string),label_seq(string))
if i % 20 == 0: update()
if i % 100 == 0:
hinton.plot(test(font.imagify("test"),label_seq("test")).T,max_arr=1.)
hinton.plot(font.imagify("test").T[::-1].astype('float32'))
P.save('model.pkl')
示例4: xrange
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
best_cost = np.inf
increase_count = 0
seen = 0
for epoch in xrange(max_epochs):
print "Epoch:", epoch + 1
print "Batch size:", batch_size
# Run test on validation set
data_stream = data_io.stream(data_file, char2id)
test_stream = islice(data_stream, validation_count)
test_cost = test(test_stream)
print "Perplexity:", test_cost
if test_cost < improvement_threshold * best_cost:
best_cost = test_cost
P.save(output_file)
increase_count = 0
else:
increase_count += 1
if increase_count > patience:
break
# Run training
data_stream = data_io.randomise(data_stream, buffer_size=1024)
data_stream = data_io.sortify(data_stream, key=lambda x: len(x), buffer_size=512)
batch_data_stream = data_io.batch(data_stream, batch_size=batch_size)
batch_data_stream = data_io.randomise(batch_data_stream)
for batch in batch_data_stream:
avg_cost = train(batch)
if np.isnan(avg_cost):
示例5: zip
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
output = T.nnet.softmax(T.dot(hidden,P.W_output))
delay = 5
label = X[:-delay]
predicted = output[delay:]
cost = -T.sum(T.log(predicted[T.arange(predicted.shape[0]),label]))
params = P.values()
gradients = T.grad(cost,wrt=params)
update_methods = {
'standard': [ (p, p - 0.001 * g) for p,g in zip(params,gradients) ],
# 'rmsprop' : updates.rmsprop(params,gradients),
# 'adadelta': updates.rmsprop(params,gradients),
}
P.save('init.pkl')
for update_method in update_methods:
print "Using update method:",update_method
with open('train.%s.smart_init.log'%update_method,'w') as log:
train = theano.function(
inputs = [X],
outputs = cost,
updates = update_methods[update_method],
)
P.load('init.pkl')
while True:
cost_val = train(np.random.randint(0,8,size=20).astype(np.int32))
log.write("%0.5f\n"%cost_val)
示例6: validate
# 需要導入模塊: from theano_toolkit.parameters import Parameters [as 別名]
# 或者: from theano_toolkit.parameters.Parameters import save [as 別名]
batched_stream = data_io.buffered_random(batched_stream, buffer_items=4)
return batched_stream
def validate():
stream = data_io.stream_file('data/train.%02d.pklgz' % 0)
stream = data_io.buffered_sort(stream, key=lambda x: x[1].shape[0], buffer_items=128)
batched_stream = reader.batch_and_pad(stream, batch_size=32, mean=mean, std=std)
total_cost = 0
total_frames = 0
for data, lengths in batched_stream:
batch_avg_cost = test(data,lengths)
batch_frames = np.sum(lengths)
total_cost += batch_avg_cost * batch_frames
total_frames += batch_frames
return total_cost / total_frames
import train_loop
train_loop.run(
data_iterator=stream,
train_fun=lambda batch:train(batch[0],batch[1]),
validation_score=validate,
save_best_params=lambda:P.save('model.pkl'),
load_best_params=lambda:P.load('model.pkl'),
max_epochs=1000,
patience=5000,
patience_increase=2,
improvement_threshold=0.999,
)