當前位置: 首頁>>代碼示例>>Python>>正文


Python Graphics.set_aspect_ratio方法代碼示例

本文整理匯總了Python中sage.plot.graphics.Graphics.set_aspect_ratio方法的典型用法代碼示例。如果您正苦於以下問題:Python Graphics.set_aspect_ratio方法的具體用法?Python Graphics.set_aspect_ratio怎麽用?Python Graphics.set_aspect_ratio使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.plot.graphics.Graphics的用法示例。


在下文中一共展示了Graphics.set_aspect_ratio方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_fan_stereographically

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]
def plot_fan_stereographically(rays, walls, northsign=1, north=vector((-1,-1,-1)), right=vector((1,0,0)), colors=None, thickness=None):
    from sage.plot.graphics import Graphics
    from sage.plot.point import point
    from sage.misc.flatten import flatten
    from sage.plot.line import line
    from sage.misc.functional import norm
    
    if colors == None:
        colors = dict([('walls','black'),('rays','red')])

    if thickness == None:
        thickness = dict([('walls',0.5),('rays',20)])


    G = Graphics()
    
    for (u,v) in walls:
        G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,color=colors['walls'],thickness=thickness['walls'],zorder=len(G))
   
    for v in rays: 
        G += point(_stereo_coordinates(vector(v),north=northsign*north,right=right),color=colors['rays'],zorder=len(G),size=thickness['rays'])
    
    G.set_aspect_ratio(1)
    G._show_axes = False
    return G
開發者ID:Etn40ff,項目名稱:finite_type_cyclic_experiments,代碼行數:27,代碼來源:find_sortable_cones.py

示例2: plot_cluster_fan_stereographically

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]
    def plot_cluster_fan_stereographically(self, northsign=1, north=None, right=None, colors=None):
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.misc.flatten import flatten
        from sage.plot.line import line
        from sage.misc.functional import norm

        if self.rk !=3:
            raise ValueError("Can only stereographically project fans in 3d.")
        if not self.is_finite() and self._depth == infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        if north == None:
            if self.is_affine():
                north = vector(self.delta())
            else:
                north = vector( (-1,-1,-1) )
        if right == None:
            if self.is_affine():
                right = vector(self.gamma())
            else:
                right = vector( (1,0,0) )
        if colors == None:
            colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan'),(4,'yellow')])
        G = Graphics()

        roots = list(self.g_vectors())
        compatible = []
        while roots:
            x = roots.pop()
            for y in roots:
                if self.compatibility_degree(x,y) == 0:
                    compatible.append((x,y))
        for (u,v) in compatible:
            G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,thickness=0.5,color='black')

        for i in range(3):
            orbit = self.ith_orbit(i)
            for j in orbit:
                G += point(_stereo_coordinates(vector(orbit[j]),north=northsign*north,right=right),color=colors[i],zorder=len(G))

        if self.is_affine():
            tube_vectors = map(vector,flatten(self.affine_tubes()))
            for v in tube_vectors:
                G += point(_stereo_coordinates(v,north=northsign*north,right=right),color=colors[3],zorder=len(G))
            if north != vector(self.delta()):
                G += _stereo_arc(tube_vectors[0],tube_vectors[1],vector(self.delta()),north=northsign*north,right=right,thickness=2,color=colors[4],zorder=0)
            else:
                # FIXME: refactor this before publishing
                tube_projections = [
                        _stereo_coordinates(v,north=northsign*north,right=right)
                        for v in tube_vectors ]
                t=min((G.get_minmax_data()['xmax'],G.get_minmax_data()['ymax']))
                G += line([tube_projections[0],tube_projections[0]+t*(_normalize(tube_projections[0]-tube_projections[1]))],thickness=2,color=colors[4],zorder=0)
                G += line([tube_projections[1],tube_projections[1]+t*(_normalize(tube_projections[1]-tube_projections[0]))],thickness=2,color=colors[4],zorder=0)
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
開發者ID:Etn40ff,項目名稱:cluster_seed_reborn,代碼行數:60,代碼來源:tropical_cluster_algebra_g.py

示例3: plot2d

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]
    def plot2d(self,depth=None):
        # FIXME: refactor this before publishing
        from sage.plot.line import line
        from sage.plot.graphics import Graphics
        if self._n !=2:
            raise ValueError("Can only 2d plot fans.")
        if depth == None:
            depth = self._depth
        if not self.is_finite() and depth==infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        colors = dict([(0,'red'),(1,'green')])
        G = Graphics()
        for i in range(2):
            orbit = self.ith_orbit(i,depth=depth)
            for j in orbit:
                G += line([(0,0),vector(orbit[j])],color=colors[i],thickness=0.5, zorder=2*j+1)
    
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
開發者ID:Etn40ff,項目名稱:level_zero,代碼行數:23,代碼來源:tropical_cluster_algebra.py

示例4: plot

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]

#.........這裏部分代碼省略.........
            eff_curve = mapping.restrict(self.codomain()) * self
        #
        # The chart w.r.t. which the curve is plotted
        #
        if chart is None:
            chart = eff_curve._codomain.default_chart()
        elif not isinstance(chart, Chart):
            raise TypeError("{} is not a chart".format(chart))
        #
        # Coordinates of the above chart w.r.t. which the curve is plotted
        #
        if ambient_coords is None:
            ambient_coords = chart[:]  # all chart coordinates are used
        n_pc = len(ambient_coords)
        if n_pc != 2 and n_pc !=3:
            raise ValueError("The number of coordinates involved in the " +
                             "plot must be either 2 or 3, not {}".format(n_pc))
        ind_pc = [chart[:].index(pc) for pc in ambient_coords] # indices of plot
                                                            # coordinates
        #
        # Parameter range for the plot
        #
        if prange is None:
            prange = (self._domain.lower_bound(), self._domain.upper_bound())
        elif not isinstance(prange, (tuple, list)):
            raise TypeError("{} is neither a tuple nor a list".format(prange))
        elif len(prange) != 2:
            raise ValueError("the argument prange must be a tuple/list " +
                             "of 2 elements")
        tmin = prange[0]
        tmax = prange[1]
        if tmin == -Infinity:
            tmin = -max_value
        elif not include_end_point[0]:
            tmin = tmin + end_point_offset[0]
        if tmax == Infinity:
            tmax = max_value
        elif not include_end_point[1]:
            tmax = tmax - end_point_offset[1]
        tmin = numerical_approx(tmin)
        tmax = numerical_approx(tmax)
        #
        # The coordinate expression of the effective curve
        #
        canon_chart = self._domain.canonical_chart()
        transf = None
        for chart_pair in eff_curve._coord_expression:
            if chart_pair == (canon_chart, chart):
                transf = eff_curve._coord_expression[chart_pair]
                break
        else:
            # Search for a subchart
            for chart_pair in eff_curve._coord_expression:
                for schart in chart._subcharts:
                    if chart_pair == (canon_chart, schart):
                        transf = eff_curve._coord_expression[chart_pair]
        if transf is None:
            raise ValueError("No expression has been found for " +
                              "{} in terms of {}".format(self, format))
        #
        # List of points for the plot curve
        #
        plot_curve = []
        dt = (tmax - tmin) / (plot_points - 1)
        t = tmin
        if parameters is None:
            for i in range(plot_points):
                x = transf(t, simplify=False)
                plot_curve.append( [numerical_approx(x[j]) for j in ind_pc] )
                t += dt
        else:
             for i in range(plot_points):
                x = transf(t, simplify=False)
                plot_curve.append(
                               [numerical_approx( x[j].substitute(parameters) )
                                for j in ind_pc] )
                t += dt
        #
        # The plot
        #
        resu = Graphics()
        resu += line(plot_curve, color=color, linestyle=style,
                     thickness=thickness)
        if n_pc==2:  # 2D graphic
            resu.set_aspect_ratio(aspect_ratio)
            if label_axes:
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
                                                   for pc in ambient_coords]
        else: # 3D graphic
            if aspect_ratio == 'automatic':
                aspect_ratio = 1
            resu.aspect_ratio(aspect_ratio)
            if label_axes:
                labels = [str(pc) for pc in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:gaby7646,項目名稱:sage,代碼行數:104,代碼來源:curve.py

示例5: finalize

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]
    def finalize(self, G):
        r"""
        Finalize a root system plot.

        INPUT:

        - ``G`` -- a root system plot or ``0``

        This sets the aspect ratio to 1 and remove the axes. This
        should be called by all the user-level plotting methods of
        root systems. This will become mostly obsolete when
        customization options won't be lost anymore upon addition of
        graphics objects and there will be a proper empty object for
        2D and 3D plots.

        EXAMPLES::

            sage: L = RootSystem(["B",2,1]).ambient_space()
            sage: options = L.plot_parse_options()
            sage: p = L.plot_roots(plot_options=options)
            sage: p += L.plot_coroots(plot_options=options)
            sage: p.axes()
            True
            sage: p = options.finalize(p)
            sage: p.axes()
            False
            sage: p.aspect_ratio()
            1.0

            sage: options = L.plot_parse_options(affine=False)
            sage: p = L.plot_roots(plot_options=options)
            sage: p += point([[1,1,0]])
            sage: p = options.finalize(p)
            sage: p.aspect_ratio()
            [1.0, 1.0, 1.0]

        If the input is ``0``, this returns an empty graphics object::

            sage: type(options.finalize(0))
            <class 'sage.plot.plot3d.base.Graphics3dGroup'>

            sage: options = L.plot_parse_options()
            sage: type(options.finalize(0))
            <class 'sage.plot.graphics.Graphics'>
            sage: list(options.finalize(0))
            []
        """
        from sage.plot.graphics import Graphics
        if self.dimension == 2:
            if G == 0:
                G = Graphics()
            G.set_aspect_ratio(1)
            # TODO: make this customizable
            G.axes(False)
        elif self.dimension == 3:
            if G == 0:
                from sage.plot.plot3d.base import Graphics3dGroup
                G = Graphics3dGroup()
            G.aspect_ratio(1)
            # TODO: Configuration axes
        return G
開發者ID:biasse,項目名稱:sage,代碼行數:63,代碼來源:plot.py

示例6: plot

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]

#.........這裏部分代碼省略.........
            # TODO: THIS SHOULD USE THE EXISTING PLOT OF ARCS!
            # plot the arc from p to q differently depending on the type of self
            p = ZZ(p)
            q = ZZ(q)
            t = var('t')
            if p - q in [1, -1]:
                def f(t):
                    return (radius * cos(t), radius * sin(t))
                (p, q) = sorted([p, q])
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                return parametric_plot(f(t), (t, angle_q, angle_p), **opts)
            if self.type() == 'A':
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                if angle_p < angle_q:
                    angle_p += 2 * pi
                internal_angle = angle_p - angle_q
                if internal_angle > pi:
                    (angle_p, angle_q) = (angle_q + 2 * pi, angle_p)
                    internal_angle = angle_p - angle_q
                angle_center = (angle_p+angle_q) / 2
                hypotenuse = radius / cos(internal_angle / 2)
                radius_arc = hypotenuse * sin(internal_angle / 2)
                center = (hypotenuse * cos(angle_center),
                          hypotenuse * sin(angle_center))
                center_angle_p = angle_p + pi / 2
                center_angle_q = angle_q + 3 * pi / 2

                def f(t):
                    return (radius_arc * cos(t) + center[0],
                            radius_arc * sin(t) + center[1])
                return parametric_plot(f(t), (t, center_angle_p,
                                              center_angle_q), **opts)
            elif self.type() == 'D':
                if p >= q:
                    q += self.r()
                px = -2 * pi * p / self.r() + pi / 2
                qx = -2 * pi * q / self.r() + pi / 2
                arc_radius = (px - qx) / 2
                arc_center = qx + arc_radius

                def f(t):
                    return exp(I * ((cos(t) + I * sin(t)) *
                                    arc_radius + arc_center)) * radius
                return parametric_plot((real_part(f(t)), imag_part(f(t))),
                                       (t, 0, pi), **opts)

        def vertex_to_angle(v):
            # v==0 corresponds to pi/2
            return -2 * pi * RR(v) / self.r() + 5 * pi / 2

        # Begin plotting
        P = Graphics()
        # Shade neuter intervals
        neuter_intervals = [x for x in flatten(self.intervals()[:-1],
                                               max_level=1)
                            if x[2] in ["NR", "NL"]]
        shaded_triangles = map(triangle, neuter_intervals)
        for (p, q, r) in shaded_triangles:
            points = list(plot_arc(radius, p, q)[0])
            points += list(plot_arc(radius, q, r)[0])
            points += list(reversed(plot_arc(radius, p, r)[0]))
            P += polygon2d(points, **shading_opts)
        # Disk boundary
        P += circle((0, 0), radius, **triangulation_opts)
        # Triangulation
        for (p, q) in self.triangulation():
            P += plot_arc(radius, p, q, **triangulation_opts)
        if self.type() == 'D':
            s = radius / 50.0
            P += polygon2d([(s, 5 * s), (s, 7 * s),
                            (3 * s, 5 * s), (3 * s, 7 * s)],
                           color=triangulation_opts['color'])
            P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)],
                              [(2 * s, 10 * s), (s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)],
                              [(-2 * s, 10 * s), (-s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += point((0, 0), zorder=len(P), **points_opts)
        # Vertices
        v_points = {x: (radius * cos(vertex_to_angle(x)),
                        radius * sin(vertex_to_angle(x)))
                    for x in self.vertices()}
        for v in v_points:
            P += point(v_points[v], zorder=len(P), **points_opts)
        # Reflection axes
        P += line([(0, 1.1 * radius), (0, -1.1 * radius)],
                  zorder=len(P), **reflections_opts)
        axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1])
        (a, b) = (1.1 * radius * cos(axis_angle),
                  1.1 * radius * sin(axis_angle))
        P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts)
        # Wrap up
        P.set_aspect_ratio(1)
        P.axes(False)
        return P
開發者ID:sagemath,項目名稱:sage,代碼行數:104,代碼來源:sine_gordon.py

示例7: _graphics

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import set_aspect_ratio [as 別名]
    def _graphics(self, plot_curve, ambient_coords, thickness=1,
                  aspect_ratio='automatic', color='red', style='-',
                  label_axes=True):
        r"""
        Plot a 2D or 3D curve in a Cartesian graph with axes labeled by
        the ambient coordinates; it is invoked by the methods
        :meth:`plot` of
        :class:`~sage.manifolds.differentiable.curve.DifferentiableCurve`,
        and its subclasses
        (:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedCurve`,
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedAutoparallelCurve`,
        and
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedGeodesic`).

        TESTS::

            sage: M = Manifold(2, 'R^2')
            sage: X.<x,y> = M.chart()
            sage: R.<t> = RealLine()
            sage: c = M.curve([cos(t), sin(t)], (t, 0, 2*pi), name='c')
            sage: graph = c._graphics([[1,2], [3,4]], [x,y])
            sage: graph._objects[0].xdata == [1,3]
            True
            sage: graph._objects[0].ydata == [2,4]
            True
            sage: graph._objects[0]._options['thickness'] == 1
            True
            sage: graph._extra_kwds['aspect_ratio'] == 'automatic'
            True
            sage: graph._objects[0]._options['rgbcolor'] == 'red'
            True
            sage: graph._objects[0]._options['linestyle'] == '-'
            True
            sage: l = [r'$'+latex(x)+r'$', r'$'+latex(y)+r'$']
            sage: graph._extra_kwds['axes_labels'] == l
            True

        """

        from sage.plot.graphics import Graphics
        from sage.plot.line import line
        from sage.manifolds.utilities import set_axes_labels


        #
        # The plot
        #
        n_pc = len(ambient_coords)
        resu = Graphics()
        resu += line(plot_curve, color=color, linestyle=style,
                     thickness=thickness)
        if n_pc == 2:  # 2D graphic
            resu.set_aspect_ratio(aspect_ratio)
            if label_axes:
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
                                                   for pc in ambient_coords]
        else: # 3D graphic
            if aspect_ratio == 'automatic':
                aspect_ratio = 1
            resu.aspect_ratio(aspect_ratio)
            if label_axes:
                labels = [str(pc) for pc in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:70,代碼來源:curve.py


注:本文中的sage.plot.graphics.Graphics.set_aspect_ratio方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。