本文整理匯總了Python中sage.plot.graphics.Graphics._show_axes方法的典型用法代碼示例。如果您正苦於以下問題:Python Graphics._show_axes方法的具體用法?Python Graphics._show_axes怎麽用?Python Graphics._show_axes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sage.plot.graphics.Graphics
的用法示例。
在下文中一共展示了Graphics._show_axes方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_fan_stereographically
# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _show_axes [as 別名]
def plot_fan_stereographically(rays, walls, northsign=1, north=vector((-1,-1,-1)), right=vector((1,0,0)), colors=None, thickness=None):
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.misc.flatten import flatten
from sage.plot.line import line
from sage.misc.functional import norm
if colors == None:
colors = dict([('walls','black'),('rays','red')])
if thickness == None:
thickness = dict([('walls',0.5),('rays',20)])
G = Graphics()
for (u,v) in walls:
G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,color=colors['walls'],thickness=thickness['walls'],zorder=len(G))
for v in rays:
G += point(_stereo_coordinates(vector(v),north=northsign*north,right=right),color=colors['rays'],zorder=len(G),size=thickness['rays'])
G.set_aspect_ratio(1)
G._show_axes = False
return G
示例2: plot_cluster_fan_stereographically
# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _show_axes [as 別名]
def plot_cluster_fan_stereographically(self, northsign=1, north=None, right=None, colors=None):
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.misc.flatten import flatten
from sage.plot.line import line
from sage.misc.functional import norm
if self.rk !=3:
raise ValueError("Can only stereographically project fans in 3d.")
if not self.is_finite() and self._depth == infinity:
raise ValueError("For infinite algebras you must specify the depth.")
if north == None:
if self.is_affine():
north = vector(self.delta())
else:
north = vector( (-1,-1,-1) )
if right == None:
if self.is_affine():
right = vector(self.gamma())
else:
right = vector( (1,0,0) )
if colors == None:
colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan'),(4,'yellow')])
G = Graphics()
roots = list(self.g_vectors())
compatible = []
while roots:
x = roots.pop()
for y in roots:
if self.compatibility_degree(x,y) == 0:
compatible.append((x,y))
for (u,v) in compatible:
G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,thickness=0.5,color='black')
for i in range(3):
orbit = self.ith_orbit(i)
for j in orbit:
G += point(_stereo_coordinates(vector(orbit[j]),north=northsign*north,right=right),color=colors[i],zorder=len(G))
if self.is_affine():
tube_vectors = map(vector,flatten(self.affine_tubes()))
for v in tube_vectors:
G += point(_stereo_coordinates(v,north=northsign*north,right=right),color=colors[3],zorder=len(G))
if north != vector(self.delta()):
G += _stereo_arc(tube_vectors[0],tube_vectors[1],vector(self.delta()),north=northsign*north,right=right,thickness=2,color=colors[4],zorder=0)
else:
# FIXME: refactor this before publishing
tube_projections = [
_stereo_coordinates(v,north=northsign*north,right=right)
for v in tube_vectors ]
t=min((G.get_minmax_data()['xmax'],G.get_minmax_data()['ymax']))
G += line([tube_projections[0],tube_projections[0]+t*(_normalize(tube_projections[0]-tube_projections[1]))],thickness=2,color=colors[4],zorder=0)
G += line([tube_projections[1],tube_projections[1]+t*(_normalize(tube_projections[1]-tube_projections[0]))],thickness=2,color=colors[4],zorder=0)
G.set_aspect_ratio(1)
G._show_axes = False
return G
示例3: plot2d
# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _show_axes [as 別名]
def plot2d(self,depth=None):
# FIXME: refactor this before publishing
from sage.plot.line import line
from sage.plot.graphics import Graphics
if self._n !=2:
raise ValueError("Can only 2d plot fans.")
if depth == None:
depth = self._depth
if not self.is_finite() and depth==infinity:
raise ValueError("For infinite algebras you must specify the depth.")
colors = dict([(0,'red'),(1,'green')])
G = Graphics()
for i in range(2):
orbit = self.ith_orbit(i,depth=depth)
for j in orbit:
G += line([(0,0),vector(orbit[j])],color=colors[i],thickness=0.5, zorder=2*j+1)
G.set_aspect_ratio(1)
G._show_axes = False
return G