當前位置: 首頁>>代碼示例>>Python>>正文


Python graphics.Graphics類代碼示例

本文整理匯總了Python中sage.plot.graphics.Graphics的典型用法代碼示例。如果您正苦於以下問題:Python Graphics類的具體用法?Python Graphics怎麽用?Python Graphics使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Graphics類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_fan_stereographically

def plot_fan_stereographically(rays, walls, northsign=1, north=vector((-1,-1,-1)), right=vector((1,0,0)), colors=None, thickness=None):
    from sage.plot.graphics import Graphics
    from sage.plot.point import point
    from sage.misc.flatten import flatten
    from sage.plot.line import line
    from sage.misc.functional import norm
    
    if colors == None:
        colors = dict([('walls','black'),('rays','red')])

    if thickness == None:
        thickness = dict([('walls',0.5),('rays',20)])


    G = Graphics()
    
    for (u,v) in walls:
        G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,color=colors['walls'],thickness=thickness['walls'],zorder=len(G))
   
    for v in rays: 
        G += point(_stereo_coordinates(vector(v),north=northsign*north,right=right),color=colors['rays'],zorder=len(G),size=thickness['rays'])
    
    G.set_aspect_ratio(1)
    G._show_axes = False
    return G
開發者ID:Etn40ff,項目名稱:finite_type_cyclic_experiments,代碼行數:25,代碼來源:find_sortable_cones.py

示例2: legend_3d

def legend_3d(hyperplane_arrangement, hyperplane_colors, length):
    r"""
    Create plot of a 3d legend for an arrangement of planes in 3-space.  The
    ``length`` parameter determines whether short or long labels are used in
    the legend.

    INPUT:

    - ``hyperplane_arrangement`` -- a hyperplane arrangement
    
    - ``hyperplane_colors`` -- list of colors

    - ``length`` -- either ``'short'`` or ``'long'``

    OUTPUT:

    - A graphics object.

    EXAMPLES::

        sage: a = hyperplane_arrangements.semiorder(3)
        sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d
        sage: legend_3d(a, list(colors.values())[:6],length='long')
        Graphics object consisting of 6 graphics primitives

        sage: b = hyperplane_arrangements.semiorder(4)
        sage: c = b.essentialization()
        sage: legend_3d(c, list(colors.values())[:12], length='long')
        Graphics object consisting of 12 graphics primitives

        sage: legend_3d(c, list(colors.values())[:12], length='short')
        Graphics object consisting of 12 graphics primitives

        sage: p = legend_3d(c, list(colors.values())[:12], length='short')
        sage: p.set_legend_options(ncol=4)
        sage: type(p)
        <class 'sage.plot.graphics.Graphics'>
    """
    if hyperplane_arrangement.dimension() != 3:
        raise ValueError('arrangements must be in 3-space')
    hyps = hyperplane_arrangement.hyperplanes()
    N = len(hyperplane_arrangement)
    if length == 'short':
        labels = ['  ' + str(i) for i in range(N)]
    else:
        labels = ['  ' + hyps[i]._repr_linear(include_zero=False) for i in
                  range(N)]
    p = Graphics()
    for i in range(N):
        p += line([(0,0),(0,0)], color=hyperplane_colors[i], thickness=8,
                legend_label=labels[i], axes=False)
    p.set_legend_options(title='Hyperplanes', loc='center', labelspacing=0.4, 
            fancybox=True, font_size='x-large', ncol=2)
    p.legend(True)
    return p
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:55,代碼來源:plot.py

示例3: bezier_path

    def bezier_path(self):
        """
        Return ``self`` as a Bezier path.

        This is needed to concatenate arcs, in order to
        create hyperbolic polygons.

        EXAMPLES::

            sage: from sage.plot.arc import Arc
            sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
            ....:     'linestyle':'--'}
            sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
            Graphics object consisting of 1 graphics primitive

            sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red")
            sage: b = a[0].bezier_path()
            sage: b[0]
            Bezier path from (1.133..., 0.8237...) to (-0.2655..., 0.9911...)
        """
        from sage.plot.bezier_path import BezierPath
        from sage.plot.graphics import Graphics
        from matplotlib.path import Path
        import numpy as np
        ma = self._matplotlib_arc()
        def theta_stretch(theta, scale):
            theta = np.deg2rad(theta)
            x = np.cos(theta)
            y = np.sin(theta)
            return np.rad2deg(np.arctan2(scale * y, x))
        theta1 = theta_stretch(ma.theta1, ma.width / ma.height)
        theta2 = theta_stretch(ma.theta2, ma.width / ma.height)

        pa = ma
        pa._path = Path.arc(theta1, theta2)
        transform = pa.get_transform().get_matrix()
        cA, cC, cE = transform[0]
        cB, cD, cF = transform[1]
        points = []
        for u in pa._path.vertices:
            x, y = list(u)
            points += [(cA * x + cC * y + cE, cB * x + cD * y + cF)]
        cutlist = [points[0: 4]]
        N = 4
        while N < len(points):
            cutlist += [points[N: N + 3]]
            N += 3
        g = Graphics()
        opt = self.options()
        opt['fill'] = False
        g.add_primitive(BezierPath(cutlist, opt))
        return g
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:52,代碼來源:arc.py

示例4: bar_chart

def bar_chart(datalist, **options):
    """
    A bar chart of (currently) one list of numerical data.
    Support for more data lists in progress.

    EXAMPLES:

    A bar_chart with blue bars::

        sage: bar_chart([1,2,3,4])
        Graphics object consisting of 1 graphics primitive

    A bar_chart with thinner bars::

        sage: bar_chart([x^2 for x in range(1,20)], width=0.2)
        Graphics object consisting of 1 graphics primitive

    A bar_chart with negative values and red bars::

        sage: bar_chart([-3,5,-6,11], rgbcolor=(1,0,0))
        Graphics object consisting of 1 graphics primitive

    A bar chart with a legend (it's possible, not necessarily useful)::

        sage: bar_chart([-1,1,-1,1], legend_label='wave')
        Graphics object consisting of 1 graphics primitive

    Extra options will get passed on to show(), as long as they are valid::

        sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0), axes=False)
        Graphics object consisting of 1 graphics primitive
        sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0)).show(axes=False) # These are equivalent
    """
    dl = len(datalist)
    #if dl > 1:
    #    print "WARNING, currently only 1 data set allowed"
    #    datalist = datalist[0]
    if dl == 3:
        datalist = datalist+[0]
    #bardata = []
    #cnt = 1
    #for pnts in datalist:
        #ind = [i+cnt/dl for i in range(len(pnts))]
        #bardata.append([ind, pnts, xrange, yrange])
        #cnt += 1

    g = Graphics()
    g._set_extra_kwds(Graphics._extract_kwds_for_show(options))
    #TODO: improve below for multiple data sets!
    #cnt = 1
    #for ind, pnts, xrange, yrange in bardata:
        #options={'rgbcolor':hue(cnt/dl),'width':0.5/dl}
    #    g._bar_chart(ind, pnts, xrange, yrange, options=options)
    #    cnt += 1
    #else:
    ind = list(range(len(datalist)))
    g.add_primitive(BarChart(ind, datalist, options=options))
    if options['legend_label']:
        g.legend(True)
    return g
開發者ID:robertwb,項目名稱:sage,代碼行數:60,代碼來源:bar_chart.py

示例5: plot_n_matrices_eigenvectors

    def plot_n_matrices_eigenvectors(self, n, side='right', color_index=0, draw_line=False):
        r"""
        INPUT:

        - ``n`` -- integer, length
        - ``side`` -- ``'left'`` or ``'right'``, drawing left or right
          eigenvectors
        - ``color_index`` -- 0 for first letter, -1 for last letter
        - ``draw_line`` -- boolean

        EXAMPLES::

            sage: from slabbe.matrix_cocycle import cocycles
            sage: ARP = cocycles.ARP()
            sage: G = ARP.plot_n_matrices_eigenvectors(2)
        """
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.plot.line import line
        from sage.plot.text import text
        from sage.plot.colors import hue
        from sage.modules.free_module_element import vector
        from .matrices import M3to2
        R = self.n_matrices_eigenvectors(n)
        L = [(w, M3to2*(a/sum(a)), M3to2*(b/sum(b))) for (w,a,b) in R]
        G = Graphics()
        alphabet = self._language._alphabet
        color_ = dict( (letter, hue(i/float(len(alphabet)))) for i,letter in
                enumerate(alphabet))
        for letter in alphabet:
            L_filtered = [(w,p1,p2) for (w,p1,p2) in L if w[color_index] == letter]
            words,rights,lefts = zip(*L_filtered)
            if side == 'right':
                G += point(rights, color=color_[letter], legend_label=letter)
            elif side == 'left':
                G += point(lefts,  color=color_[letter], legend_label=letter)
            else:
                raise ValueError("side(=%s) should be left or right" % side)

        if draw_line:
            for (a,b) in L:
                G += line([a,b], color='black', linestyle=":")
        G += line([M3to2*vector(a) for a in [(1,0,0), (0,1,0), (0,0,1), (1,0,0)]]) 
        title = "%s eigenvectors, colored by letter w[%s] of cylinder w" % (side, color_index)
        G += text(title, (0.5, 1.05), axis_coords=True)
        G.axes(False)
        return G
開發者ID:seblabbe,項目名稱:slabbe,代碼行數:47,代碼來源:matrix_cocycle.py

示例6: plot3d

    def plot3d(self,depth=None):
        # FIXME: refactor this before publishing
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.misc.flatten import flatten
        from sage.plot.plot3d.shapes2 import sphere
        if self._n !=3:
            raise ValueError("Can only 3d plot fans.")
        if depth == None:
            depth = self._depth
        if not self.is_finite() and depth==infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan')])
        G = Graphics()

        roots = self.d_vectors(depth=depth)
        compatible = []
        while roots:
            x = roots.pop()
            for y in roots:
                if self.compatibility_degree(x,y) == 0:
                    compatible.append((x,y))
        for (u,v) in compatible:
            G += _arc3d((_normalize(vector(u)),_normalize(vector(v))),thickness=0.5,color='black')

        for i in range(3):
            orbit = self.ith_orbit(i,depth=depth)
            for j in orbit:
                G += point(_normalize(vector(orbit[j])),color=colors[i],size=10,zorder=len(G.all))

        if self.is_affine():
            tube_vectors=map(vector,flatten(self.affine_tubes()))
            tube_vectors=map(_normalize,tube_vectors)
            for v in tube_vectors:
                G += point(v,color=colors[3],size=10,zorder=len(G.all))
            G += _arc3d((tube_vectors[0],tube_vectors[1]),thickness=5,color='gray',zorder=0)
        
        G += sphere((0,0,0),opacity=0.1,zorder=0)
        G._extra_kwds['frame']=False
        G._extra_kwds['aspect_ratio']=1 
        return G
開發者ID:Etn40ff,項目名稱:level_zero,代碼行數:42,代碼來源:tropical_cluster_algebra.py

示例7: plot2d

    def plot2d(self,depth=None):
        # FIXME: refactor this before publishing
        from sage.plot.line import line
        from sage.plot.graphics import Graphics
        if self._n !=2:
            raise ValueError("Can only 2d plot fans.")
        if depth == None:
            depth = self._depth
        if not self.is_finite() and depth==infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        colors = dict([(0,'red'),(1,'green')])
        G = Graphics()
        for i in range(2):
            orbit = self.ith_orbit(i,depth=depth)
            for j in orbit:
                G += line([(0,0),vector(orbit[j])],color=colors[i],thickness=0.5, zorder=2*j+1)
    
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
開發者ID:Etn40ff,項目名稱:level_zero,代碼行數:21,代碼來源:tropical_cluster_algebra.py

示例8: bezier_path

    def bezier_path(self):
        """
        Return ``self`` as a Bezier path.

        This is needed to concatenate arcs, in order to
        create hyperbolic polygons.

        EXAMPLES::

            sage: from sage.plot.arc import Arc
            sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
            ....:     'linestyle':'--'}
            sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
            Graphics object consisting of 1 graphics primitive

            sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red")
            sage: b = a[0].bezier_path()
            sage: b[0]
            Bezier path from (1.618..., 0.5877...) to (-0.5176..., 0.9659...)
        """
        from sage.plot.bezier_path import BezierPath
        from sage.plot.graphics import Graphics
        ma = self._matplotlib_arc()
        transform = ma.get_transform().get_matrix()
        cA, cC, cE = transform[0]
        cB, cD, cF = transform[1]
        points = []
        for u in ma._path.vertices:
            x, y = list(u)
            points += [(cA * x + cC * y + cE, cB * x + cD * y + cF)]
        cutlist = [points[0: 4]]
        N = 4
        while N < len(points):
            cutlist += [points[N: N + 3]]
            N += 3
        g = Graphics()
        opt = self.options()
        opt['fill'] = False
        g.add_primitive(BezierPath(cutlist, opt))
        return g
開發者ID:ProgVal,項目名稱:sage,代碼行數:40,代碼來源:arc.py

示例9: plot

    def plot(self, m, pointsize=100, thickness=3, axes=False):
        r"""
        Return 2d graphics object contained in the primal box [-m,m]^d.

        INPUT:

        - ``pointsize``, integer (default:``100``),
        - ``thickness``, integer (default:``3``),
        - ``axes``, bool (default:``False``),

        EXAMPLES::

            sage: from slabbe import BondPercolationSample
            sage: S = BondPercolationSample(0.5,2)
            sage: S.plot(2)           # optional long

        It works in 3d!!::

            sage: S = BondPercolationSample(0.5,3)
            sage: S.plot(3, pointsize=10, thickness=1)     # optional long
            Graphics3d Object

        """
        s = ""
        s += "\\begin{tikzpicture}\n"
        s += "[inner sep=0pt,thick,\n"
        s += "reddot/.style={fill=red,draw=red,circle,minimum size=5pt}]\n"
        s += "\\clip %s rectangle %s;\n" % ((-m-.4,-m-.4), (m+.4,m+.4))
        G = Graphics()
        for u in self.cluster_in_box(m+1):
            G += point(u, color='blue', size=pointsize)
        for (u,v) in self.edges_in_box(m+1):
            G += line((u,v), thickness=thickness, alpha=0.8)
        G += text("p=%.3f" % self._p, (0.5,1.03), axis_coords=True, color='black')
        G += circle((0,0), 0.5, color='red', thickness=thickness)
        if self._dimension == 2:
            G.axes(axes)
        return G
開發者ID:seblabbe,項目名稱:slabbe,代碼行數:38,代碼來源:bond_percolation.py

示例10: plot_cluster_fan_stereographically

    def plot_cluster_fan_stereographically(self, northsign=1, north=None, right=None, colors=None):
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.misc.flatten import flatten
        from sage.plot.line import line
        from sage.misc.functional import norm

        if self.rk !=3:
            raise ValueError("Can only stereographically project fans in 3d.")
        if not self.is_finite() and self._depth == infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        if north == None:
            if self.is_affine():
                north = vector(self.delta())
            else:
                north = vector( (-1,-1,-1) )
        if right == None:
            if self.is_affine():
                right = vector(self.gamma())
            else:
                right = vector( (1,0,0) )
        if colors == None:
            colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan'),(4,'yellow')])
        G = Graphics()

        roots = list(self.g_vectors())
        compatible = []
        while roots:
            x = roots.pop()
            for y in roots:
                if self.compatibility_degree(x,y) == 0:
                    compatible.append((x,y))
        for (u,v) in compatible:
            G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,thickness=0.5,color='black')

        for i in range(3):
            orbit = self.ith_orbit(i)
            for j in orbit:
                G += point(_stereo_coordinates(vector(orbit[j]),north=northsign*north,right=right),color=colors[i],zorder=len(G))

        if self.is_affine():
            tube_vectors = map(vector,flatten(self.affine_tubes()))
            for v in tube_vectors:
                G += point(_stereo_coordinates(v,north=northsign*north,right=right),color=colors[3],zorder=len(G))
            if north != vector(self.delta()):
                G += _stereo_arc(tube_vectors[0],tube_vectors[1],vector(self.delta()),north=northsign*north,right=right,thickness=2,color=colors[4],zorder=0)
            else:
                # FIXME: refactor this before publishing
                tube_projections = [
                        _stereo_coordinates(v,north=northsign*north,right=right)
                        for v in tube_vectors ]
                t=min((G.get_minmax_data()['xmax'],G.get_minmax_data()['ymax']))
                G += line([tube_projections[0],tube_projections[0]+t*(_normalize(tube_projections[0]-tube_projections[1]))],thickness=2,color=colors[4],zorder=0)
                G += line([tube_projections[1],tube_projections[1]+t*(_normalize(tube_projections[1]-tube_projections[0]))],thickness=2,color=colors[4],zorder=0)
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
開發者ID:Etn40ff,項目名稱:cluster_seed_reborn,代碼行數:58,代碼來源:tropical_cluster_algebra_g.py

示例11: finalize

    def finalize(self, G):
        r"""
        Finalize a root system plot.

        INPUT:

        - ``G`` -- a root system plot or ``0``

        This sets the aspect ratio to 1 and remove the axes. This
        should be called by all the user-level plotting methods of
        root systems. This will become mostly obsolete when
        customization options won't be lost anymore upon addition of
        graphics objects and there will be a proper empty object for
        2D and 3D plots.

        EXAMPLES::

            sage: L = RootSystem(["B",2,1]).ambient_space()
            sage: options = L.plot_parse_options()
            sage: p = L.plot_roots(plot_options=options)
            sage: p += L.plot_coroots(plot_options=options)
            sage: p.axes()
            True
            sage: p = options.finalize(p)
            sage: p.axes()
            False
            sage: p.aspect_ratio()
            1.0

            sage: options = L.plot_parse_options(affine=False)
            sage: p = L.plot_roots(plot_options=options)
            sage: p += point([[1,1,0]])
            sage: p = options.finalize(p)
            sage: p.aspect_ratio()
            [1.0, 1.0, 1.0]

        If the input is ``0``, this returns an empty graphics object::

            sage: type(options.finalize(0))
            <class 'sage.plot.plot3d.base.Graphics3dGroup'>

            sage: options = L.plot_parse_options()
            sage: type(options.finalize(0))
            <class 'sage.plot.graphics.Graphics'>
            sage: list(options.finalize(0))
            []
        """
        from sage.plot.graphics import Graphics
        if self.dimension == 2:
            if G == 0:
                G = Graphics()
            G.set_aspect_ratio(1)
            # TODO: make this customizable
            G.axes(False)
        elif self.dimension == 3:
            if G == 0:
                from sage.plot.plot3d.base import Graphics3dGroup
                G = Graphics3dGroup()
            G.aspect_ratio(1)
            # TODO: Configuration axes
        return G
開發者ID:biasse,項目名稱:sage,代碼行數:61,代碼來源:plot.py

示例12: plot

    def plot(self, chart=None, ambient_coords=None, mapping=None,
             chart_domain=None, fixed_coords=None, ranges=None, max_value=8,
             nb_values=None, steps=None,scale=1, color='blue', parameters=None,
             label_axes=True, **extra_options):
        r"""
        Plot the vector field in a Cartesian graph based on the coordinates
        of some ambient chart.

        The vector field is drawn in terms of two (2D graphics) or three
        (3D graphics) coordinates of a given chart, called hereafter the
        *ambient chart*.
        The vector field's base points `p` (or their images `\Phi(p)` by some
        differentiable mapping `\Phi`) must lie in the ambient chart's domain.

        INPUT:

        - ``chart`` -- (default: ``None``) the ambient chart (see above); if
          ``None``, the default chart of the vector field's domain is used
        - ``ambient_coords`` -- (default: ``None``) tuple containing the 2 or 3
          coordinates of the ambient chart in terms of which the plot is
          performed; if ``None``, all the coordinates of the ambient chart are
          considered
        - ``mapping`` -- (default: ``None``) differentiable mapping `\Phi`
          (instance of
          :class:`~sage.geometry.manifolds.diffmapping.DiffMapping`)
          providing the link between the vector field's domain and
          the ambient chart ``chart``; if ``None``, the identity mapping is
          assumed
        - ``chart_domain`` -- (default: ``None``) chart on the vector
          field's domain to define the points at which vector arrows are to be
          plotted; if ``None``, the default chart of the vector field's domain
          is used
        - ``fixed_coords`` -- (default: ``None``) dictionary with keys the
          coordinates of ``chart_domain`` that are kept fixed and with values
          the value of these coordinates; if ``None``, all the coordinates of
          ``chart_domain`` are used
        - ``ranges`` -- (default: ``None``) dictionary with keys the
          coordinates of ``chart_domain`` to be used and values
          tuples ``(x_min,x_max)`` specifying the
          coordinate range for the plot; if ``None``, the entire coordinate
          range declared during the construction of ``chart_domain`` is
          considered (with ``-Infinity`` replaced by ``-max_value`` and
          ``+Infinity`` by ``max_value``)
        - ``max_value`` -- (default: 8) numerical value substituted to
          ``+Infinity`` if the latter is the upper bound of the range of a
          coordinate for which the plot is performed over the entire coordinate
          range (i.e. for which no specific plot range has been set in
          ``ranges``); similarly ``-max_value`` is the numerical valued
          substituted for ``-Infinity``
        - ``nb_values`` -- (default: ``None``) either an integer or a dictionary
          with keys the coordinates of ``chart_domain`` to be used and values
          the number of values of the coordinate for sampling
          the part of the vector field's domain involved in the plot ; if
          ``nb_values`` is a single integer, it represents the number of
          values for all coordinates; if ``nb_values`` is ``None``, it is set
          to 9 for a 2D plot and to 5 for a 3D plot
        - ``steps`` -- (default: ``None``) dictionary with keys the coordinates
          of ``chart_domain`` to be used and values the step between each
          constant value of the coordinate; if ``None``, the step is computed
          from the coordinate range (specified in ``ranges``) and ``nb_values``.
          On the contrary, if the step is provided for some coordinate, the
          corresponding number of values is deduced from it and the coordinate
          range.
        - ``scale`` -- (default: 1) value by which the lengths of the arrows
          representing the vectors is multiplied
        - ``color`` -- (default: 'blue') color of the arrows representing the
          vectors
        - ``parameters`` -- (default: ``None``) dictionary giving the numerical
          values of the parameters that may appear in the coordinate expression
          of the vector field (see example below)
        - ``label_axes`` -- (default: ``True``) boolean determining whether the
          labels of the coordinate axes of ``chart`` shall be added to the
          graph; can be set to ``False`` if the graph is 3D and must be
          superposed with another graph.
        - ``**extra_options`` -- extra options for the arrow plot, like
          ``linestyle``, ``width`` or ``arrowsize`` (see
          :func:`~sage.plot.arrow.arrow2d` and
          :func:`~sage.plot.plot3d.shapes.arrow3d` for details)

        OUTPUT:

        - a graphic object, either an instance of
          :class:`~sage.plot.graphics.Graphics` for a 2D plot (i.e. based on
          2 coordinates of ``chart``) or an instance of
          :class:`~sage.plot.plot3d.base.Graphics3d` for a 3D plot (i.e.
          based on 3 coordinates of ``chart``)

        EXAMPLES:

        Plot of a vector field on a 2-dimensional manifold::

            sage: Manifold._clear_cache_() # for doctests only
            sage: M = Manifold(2, 'M')
            sage: X.<x,y> = M.chart()
            sage: v = M.vector_field(name='v')
            sage: v[:] = -y, x ; v.display()
            v = -y d/dx + x d/dy
            sage: v.plot()
            Graphics object consisting of 80 graphics primitives

#.........這裏部分代碼省略.........
開發者ID:gaby7646,項目名稱:sage,代碼行數:101,代碼來源:vectorfield.py

示例13: _graphics

    def _graphics(self, plot_curve, ambient_coords, thickness=1,
                  aspect_ratio='automatic', color='red', style='-',
                  label_axes=True):
        r"""
        Plot a 2D or 3D curve in a Cartesian graph with axes labeled by
        the ambient coordinates; it is invoked by the methods
        :meth:`plot` of
        :class:`~sage.manifolds.differentiable.curve.DifferentiableCurve`,
        and its subclasses
        (:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedCurve`,
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedAutoparallelCurve`,
        and
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedGeodesic`).

        TESTS::

            sage: M = Manifold(2, 'R^2')
            sage: X.<x,y> = M.chart()
            sage: R.<t> = RealLine()
            sage: c = M.curve([cos(t), sin(t)], (t, 0, 2*pi), name='c')
            sage: graph = c._graphics([[1,2], [3,4]], [x,y])
            sage: graph._objects[0].xdata == [1,3]
            True
            sage: graph._objects[0].ydata == [2,4]
            True
            sage: graph._objects[0]._options['thickness'] == 1
            True
            sage: graph._extra_kwds['aspect_ratio'] == 'automatic'
            True
            sage: graph._objects[0]._options['rgbcolor'] == 'red'
            True
            sage: graph._objects[0]._options['linestyle'] == '-'
            True
            sage: l = [r'$'+latex(x)+r'$', r'$'+latex(y)+r'$']
            sage: graph._extra_kwds['axes_labels'] == l
            True

        """

        from sage.plot.graphics import Graphics
        from sage.plot.line import line
        from sage.manifolds.utilities import set_axes_labels


        #
        # The plot
        #
        n_pc = len(ambient_coords)
        resu = Graphics()
        resu += line(plot_curve, color=color, linestyle=style,
                     thickness=thickness)
        if n_pc == 2:  # 2D graphic
            resu.set_aspect_ratio(aspect_ratio)
            if label_axes:
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
                                                   for pc in ambient_coords]
        else: # 3D graphic
            if aspect_ratio == 'automatic':
                aspect_ratio = 1
            resu.aspect_ratio(aspect_ratio)
            if label_axes:
                labels = [str(pc) for pc in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:68,代碼來源:curve.py

示例14: plot

def plot(hyperplane_arrangement, **kwds):
    r"""
    Return a plot of the hyperplane arrangement.  

    If the arrangement is in 4 dimensions but inessential, a plot of
    the essentialization is returned.

    .. NOTE::

        This function is available as the
        :meth:`~sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement.plot`
        method of hyperplane arrangements. You should not call this
        function directly, only through the method.

    INPUT:

    - ``hyperplane_arrangement`` -- the hyperplane arrangement to plot

    - ``**kwds`` -- plot options: see
      :mod:`sage.geometry.hyperplane_arrangement.plot`.

    OUTPUT:
    
    A graphics object of the plot.

    EXAMPLES::

        sage: B = hyperplane_arrangements.semiorder(4)
        sage: B.plot()
        Displaying the essentialization.
        Graphics3d Object
    """
    N = len(hyperplane_arrangement)
    dim = hyperplane_arrangement.dimension()
    if hyperplane_arrangement.base_ring().characteristic() != 0:
        raise NotImplementedError('must be a field of characteristic 0')
    elif dim == 4:
        if not hyperplane_arrangement.is_essential():
            print('Displaying the essentialization.')
            hyperplane_arrangement = hyperplane_arrangement.essentialization()
    elif dim not in [1,2,3]: # revise to handle 4d
        return # silently
    # handle extra keywords
    if 'hyperplane_colors' in kwds:
        hyp_colors = kwds.pop('hyperplane_colors')
        if not isinstance(hyp_colors, list): # we assume its a single color then
            hyp_colors = [hyp_colors] * N
    else:
        HSV_tuples = [(i*1.0/N, 0.8, 0.9) for i in range(N)]
        hyp_colors = [hsv_to_rgb(*x) for x in HSV_tuples]
    if 'hyperplane_labels' in kwds:
        hyp_labels = kwds.pop('hyperplane_labels')
        has_hyp_label = True
        if not isinstance(hyp_labels, list): # we assume its a boolean then
            hyp_labels = [hyp_labels] * N
        relabeled = []
        for i in range(N):
            if hyp_labels[i] in [True,'long']:
                relabeled.append(True)
            else:
                relabeled.append(str(i))
        hyp_labels = relabeled
    else:
        has_hyp_label = False
    if 'label_colors' in kwds:
        label_colors = kwds.pop('label_colors')
        has_label_color = True
        if not isinstance(label_colors, list): # we assume its a single color then
            label_colors = [label_colors] * N
    else:
        has_label_color = False
    if 'label_fontsize' in kwds:
        label_fontsize = kwds.pop('label_fontsize')
        has_label_fontsize = True
        if not isinstance(label_fontsize, list): # we assume its a single size then
            label_fontsize = [label_fontsize] * N
    else:
        has_label_fontsize = False
    if 'label_offsets' in kwds:
        has_offsets = True
        offsets = kwds.pop('label_offsets')
    else:
        has_offsets = False # give default values below
    hyperplane_legend = kwds.pop('hyperplane_legend', 'long' if dim < 3 else False)
    if 'hyperplane_opacities' in kwds:
        hyperplane_opacities = kwds.pop('hyperplane_opacities')
        has_opacity = True
        if not isinstance(hyperplane_opacities, list): # we assume a single number then
            hyperplane_opacities = [hyperplane_opacities] * N
    else:
        has_opacity = False
    point_sizes = kwds.pop('point_sizes', 50)
    if not isinstance(point_sizes, list):
        point_sizes = [point_sizes] * N
    if 'ranges' in kwds:
        ranges_set = True
        ranges = kwds.pop('ranges')
        if not type(ranges) in [list,tuple]: # ranges is a single number
            ranges = [ranges] * N
        # So ranges is some type of list.
#.........這裏部分代碼省略.........
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:101,代碼來源:plot.py

示例15: plot

    def plot(self, chart=None, ambient_coords=None, mapping=None,
             chart_domain=None, fixed_coords=None, ranges=None,
             number_values=None, steps=None,
             parameters=None, label_axes=True, **extra_options):
        r"""
        Plot the vector field in a Cartesian graph based on the coordinates
        of some ambient chart.

        The vector field is drawn in terms of two (2D graphics) or three
        (3D graphics) coordinates of a given chart, called hereafter the
        *ambient chart*.
        The vector field's base points `p` (or their images `\Phi(p)` by some
        differentiable mapping `\Phi`) must lie in the ambient chart's domain.

        INPUT:

        - ``chart`` -- (default: ``None``) the ambient chart (see above); if
          ``None``, the default chart of the vector field's domain is used

        - ``ambient_coords`` -- (default: ``None``) tuple containing the 2
          or 3 coordinates of the ambient chart in terms of which the plot
          is performed; if ``None``, all the coordinates of the ambient
          chart are considered

        - ``mapping`` -- :class:`~sage.manifolds.differentiable.diff_map.DiffMap`
          (default: ``None``); differentiable map `\Phi` providing the link
          between the vector field's domain and the ambient chart ``chart``;
          if ``None``, the identity map is assumed

        - ``chart_domain`` -- (default: ``None``) chart on the vector field's
          domain to define the points at which vector arrows are to be plotted;
          if ``None``, the default chart of the vector field's domain is used

        - ``fixed_coords`` -- (default: ``None``) dictionary with keys the
          coordinates of ``chart_domain`` that are kept fixed and with values
          the value of these coordinates; if ``None``, all the coordinates of
          ``chart_domain`` are used

        - ``ranges`` -- (default: ``None``) dictionary with keys the
          coordinates of ``chart_domain`` to be used and values tuples
          ``(x_min, x_max)`` specifying the coordinate range for the plot;
          if ``None``, the entire coordinate range declared during the
          construction of ``chart_domain`` is considered (with ``-Infinity``
          replaced by ``-max_range`` and ``+Infinity`` by ``max_range``)

        - ``number_values`` -- (default: ``None``) either an integer or a
          dictionary with keys the coordinates of ``chart_domain`` to be
          used and values the number of values of the coordinate for sampling
          the part of the vector field's domain involved in the plot ; if
          ``number_values`` is a single integer, it represents the number of
          values for all coordinates; if ``number_values`` is ``None``, it is
          set to 9 for a 2D plot and to 5 for a 3D plot

        - ``steps`` -- (default: ``None``) dictionary with keys the
          coordinates of ``chart_domain`` to be used and values the step
          between each constant value of the coordinate; if ``None``, the
          step is computed from the coordinate range (specified in ``ranges``)
          and ``number_values``; on the contrary, if the step is provided
          for some coordinate, the corresponding number of values is deduced
          from it and the coordinate range

        - ``parameters`` -- (default: ``None``) dictionary giving the numerical
          values of the parameters that may appear in the coordinate expression
          of the vector field (see example below)

        - ``label_axes`` -- (default: ``True``) boolean determining whether
          the labels of the coordinate axes of ``chart`` shall be added to
          the graph; can be set to ``False`` if the graph is 3D and must be
          superposed with another graph

        - ``color`` -- (default: 'blue') color of the arrows representing
          the vectors

        - ``max_range`` -- (default: 8) numerical value substituted to
          ``+Infinity`` if the latter is the upper bound of the range of a
          coordinate for which the plot is performed over the entire coordinate
          range (i.e. for which no specific plot range has been set in
          ``ranges``); similarly ``-max_range`` is the numerical valued
          substituted for ``-Infinity``

        - ``scale`` -- (default: 1) value by which the lengths of the arrows
          representing the vectors is multiplied

        - ``**extra_options`` -- extra options for the arrow plot, like
          ``linestyle``, ``width`` or ``arrowsize`` (see
          :func:`~sage.plot.arrow.arrow2d` and
          :func:`~sage.plot.plot3d.shapes.arrow3d` for details)

        OUTPUT:

        - a graphic object, either an instance of
          :class:`~sage.plot.graphics.Graphics` for a 2D plot (i.e. based on
          2 coordinates of ``chart``) or an instance of
          :class:`~sage.plot.plot3d.base.Graphics3d` for a 3D plot (i.e.
          based on 3 coordinates of ``chart``)

        EXAMPLES:

        Plot of a vector field on a 2-dimensional manifold::

#.........這裏部分代碼省略.........
開發者ID:mcognetta,項目名稱:sage,代碼行數:101,代碼來源:vectorfield.py


注:本文中的sage.plot.graphics.Graphics類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。