當前位置: 首頁>>代碼示例>>Python>>正文


Python Graphics._extra_kwds['axes_labels']方法代碼示例

本文整理匯總了Python中sage.plot.graphics.Graphics._extra_kwds['axes_labels']方法的典型用法代碼示例。如果您正苦於以下問題:Python Graphics._extra_kwds['axes_labels']方法的具體用法?Python Graphics._extra_kwds['axes_labels']怎麽用?Python Graphics._extra_kwds['axes_labels']使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sage.plot.graphics.Graphics的用法示例。


在下文中一共展示了Graphics._extra_kwds['axes_labels']方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _extra_kwds['axes_labels'] [as 別名]

#.........這裏部分代碼省略.........
            eff_curve = mapping.restrict(self.codomain()) * self
        #
        # The chart w.r.t. which the curve is plotted
        #
        if chart is None:
            chart = eff_curve._codomain.default_chart()
        elif not isinstance(chart, Chart):
            raise TypeError("{} is not a chart".format(chart))
        #
        # Coordinates of the above chart w.r.t. which the curve is plotted
        #
        if ambient_coords is None:
            ambient_coords = chart[:]  # all chart coordinates are used
        n_pc = len(ambient_coords)
        if n_pc != 2 and n_pc !=3:
            raise ValueError("The number of coordinates involved in the " +
                             "plot must be either 2 or 3, not {}".format(n_pc))
        ind_pc = [chart[:].index(pc) for pc in ambient_coords] # indices of plot
                                                            # coordinates
        #
        # Parameter range for the plot
        #
        if prange is None:
            prange = (self._domain.lower_bound(), self._domain.upper_bound())
        elif not isinstance(prange, (tuple, list)):
            raise TypeError("{} is neither a tuple nor a list".format(prange))
        elif len(prange) != 2:
            raise ValueError("the argument prange must be a tuple/list " +
                             "of 2 elements")
        tmin = prange[0]
        tmax = prange[1]
        if tmin == -Infinity:
            tmin = -max_value
        elif not include_end_point[0]:
            tmin = tmin + end_point_offset[0]
        if tmax == Infinity:
            tmax = max_value
        elif not include_end_point[1]:
            tmax = tmax - end_point_offset[1]
        tmin = numerical_approx(tmin)
        tmax = numerical_approx(tmax)
        #
        # The coordinate expression of the effective curve
        #
        canon_chart = self._domain.canonical_chart()
        transf = None
        for chart_pair in eff_curve._coord_expression:
            if chart_pair == (canon_chart, chart):
                transf = eff_curve._coord_expression[chart_pair]
                break
        else:
            # Search for a subchart
            for chart_pair in eff_curve._coord_expression:
                for schart in chart._subcharts:
                    if chart_pair == (canon_chart, schart):
                        transf = eff_curve._coord_expression[chart_pair]
        if transf is None:
            raise ValueError("No expression has been found for " +
                              "{} in terms of {}".format(self, format))
        #
        # List of points for the plot curve
        #
        plot_curve = []
        dt = (tmax - tmin) / (plot_points - 1)
        t = tmin
        if parameters is None:
            for i in range(plot_points):
                x = transf(t, simplify=False)
                plot_curve.append( [numerical_approx(x[j]) for j in ind_pc] )
                t += dt
        else:
             for i in range(plot_points):
                x = transf(t, simplify=False)
                plot_curve.append(
                               [numerical_approx( x[j].substitute(parameters) )
                                for j in ind_pc] )
                t += dt
        #
        # The plot
        #
        resu = Graphics()
        resu += line(plot_curve, color=color, linestyle=style,
                     thickness=thickness)
        if n_pc==2:  # 2D graphic
            resu.set_aspect_ratio(aspect_ratio)
            if label_axes:
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
                                                   for pc in ambient_coords]
        else: # 3D graphic
            if aspect_ratio == 'automatic':
                aspect_ratio = 1
            resu.aspect_ratio(aspect_ratio)
            if label_axes:
                labels = [str(pc) for pc in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:gaby7646,項目名稱:sage,代碼行數:104,代碼來源:curve.py

示例2: plot

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _extra_kwds['axes_labels'] [as 別名]

#.........這裏部分代碼省略.........
                    xx[ind_coord[i]] = xmin[i] + ind[i]*step_tab[i]

                if chart_domain.valid_coordinates(*xx, tolerance=1e-13,
                                                  parameters=parameters):

                    # needed a xx*1 to copy the list by value
                    list_xx.append(xx*1)

                # Next index:
                ret = 1
                for pos in range(ncp-1,-1,-1):
                    imax = number_values[coords[pos]] - 1
                    if ind[pos] != imax:
                        ind[pos] += ret
                        ret = 0
                    elif ret == 1:
                        if pos == 0:
                            ind[pos] = imax + 1 # end point reached
                        else:
                            ind[pos] = 0
                            ret = 1

            lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)]
            ind_step = max(1, int(len(list_xx)/nproc/2))
            local_list = lol(list_xx,ind_step)

            # definition of the list of input parameters
            listParalInput = [(vector, dom, ind_part,
                               chart_domain, chart,
                               ambient_coords, mapping,
                               scale, color, parameters,
                               extra_options)
                              for ind_part in local_list]


            # definition of the parallel function
            @parallel(p_iter='multiprocessing', ncpus=nproc)
            def add_point_plot(vector, dom, xx_list, chart_domain, chart,
                               ambient_coords, mapping, scale, color,
                               parameters, extra_options):
                count = 0
                for xx in xx_list:
                    point = dom(xx, chart=chart_domain)
                    part = vector.at(point).plot(chart=chart,
                                                 ambient_coords=ambient_coords,
                                                 mapping=mapping,scale=scale,
                                                 color=color, print_label=False,
                                                 parameters=parameters,
                                                 **extra_options)
                    if count == 0:
                        local_resu = part
                    else:
                        local_resu += part
                    count += 1
                return local_resu

            # parallel execution and reconstruction of the plot
            for ii, val in add_point_plot(listParalInput):
                resu += val

        else:
            # sequential plot
            while ind != ind_max:
                for i in range(ncp):
                    xx[ind_coord[i]] = xmin[i] + ind[i]*step_tab[i]
                if chart_domain.valid_coordinates(*xx, tolerance=1e-13,
                                                  parameters=parameters):
                    point = dom(xx, chart=chart_domain)
                    resu += vector.at(point).plot(chart=chart,
                                                  ambient_coords=ambient_coords,
                                                  mapping=mapping, scale=scale,
                                                  color=color, print_label=False,
                                                  parameters=parameters,
                                                  **extra_options)
                # Next index:
                ret = 1
                for pos in range(ncp-1, -1, -1):
                    imax = number_values[coords[pos]] - 1
                    if ind[pos] != imax:
                        ind[pos] += ret
                        ret = 0
                    elif ret == 1:
                        if pos == 0:
                            ind[pos] = imax + 1 # end point reached
                        else:
                            ind[pos] = 0
                            ret = 1

        if label_axes:
            if nca == 2:  # 2D graphic
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(ac)+r'$'
                                                   for ac in ambient_coords]
            else: # 3D graphic
                labels = [str(ac) for ac in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:mcognetta,項目名稱:sage,代碼行數:104,代碼來源:vectorfield.py

示例3: plot

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _extra_kwds['axes_labels'] [as 別名]

#.........這裏部分代碼省略.........
        if nca != 2 and nca !=3:
            raise ValueError("the number of ambient coordinates must be " +
                             "either 2 or 3, not {}".format(nca))
        if ranges is None:
            ranges = {}
        ranges0 = {}
        for coord in coords:
            if coord in ranges:
                ranges0[coord] = (numerical_approx(ranges[coord][0]),
                                  numerical_approx(ranges[coord][1]))
            else:
                bounds = chart_domain._bounds[chart_domain[:].index(coord)]
                if bounds[0][0] == -Infinity:
                    xmin = numerical_approx(-max_value)
                elif bounds[0][1]:
                    xmin = numerical_approx(bounds[0][0])
                else:
                    xmin = numerical_approx(bounds[0][0] + 1.e-3)
                if bounds[1][0] == Infinity:
                    xmax = numerical_approx(max_value)
                elif bounds[1][1]:
                    xmax = numerical_approx(bounds[1][0])
                else:
                    xmax = numerical_approx(bounds[1][0] - 1.e-3)
                ranges0[coord] = (xmin, xmax)
        ranges = ranges0
        if nb_values is None:
            if nca == 2: # 2D plot
                nb_values = 9
            else:   # 3D plot
                nb_values = 5
        if not isinstance(nb_values, dict):
            nb_values0 = {}
            for coord in coords:
                nb_values0[coord] = nb_values
            nb_values = nb_values0
        if steps is None:
            steps = {}
        for coord in coords:
            if coord not in steps:
                steps[coord] = (ranges[coord][1] - ranges[coord][0])/ \
                               (nb_values[coord]-1)
            else:
                nb_values[coord] = 1 + int(
                           (ranges[coord][1] - ranges[coord][0])/ steps[coord])
        #
        # 2/ Plots
        #    -----
        dom = chart_domain.domain()
        nc = len(chart_domain[:])
        ncp = len(coords)
        xx = [0] * nc
        if fixed_coords is not None:
            if len(fixed_coords) != nc - ncp:
                raise ValueError("Bad number of fixed coordinates.")
            for fc, val in fixed_coords.iteritems():
                xx[chart_domain[:].index(fc)] = val
        index_p = [chart_domain[:].index(cd) for cd in coords]
        resu = Graphics()
        ind = [0] * ncp
        ind_max = [0] * ncp
        ind_max[0] = nb_values[coords[0]]
        xmin = [ranges[cd][0] for cd in coords]
        step_tab = [steps[cd] for cd in coords]
        while ind != ind_max:
            for i in range(ncp):
                xx[index_p[i]] = xmin[i] + ind[i]*step_tab[i]
            if chart_domain.valid_coordinates(*xx, tolerance=1e-13,
                                              parameters=parameters):
                point = dom(xx, chart=chart_domain)
                resu += self.at(point).plot(chart=chart,
                                 ambient_coords=ambient_coords, mapping=mapping,
                                 scale=scale, color=color, print_label=False,
                                 parameters=parameters,
                                 **extra_options)
            # Next index:
            ret = 1
            for pos in range(ncp-1,-1,-1):
                imax = nb_values[coords[pos]] - 1
                if ind[pos] != imax:
                    ind[pos] += ret
                    ret = 0
                elif ret == 1:
                    if pos == 0:
                        ind[pos] = imax + 1 # end point reached
                    else:
                        ind[pos] = 0
                        ret = 1
        if label_axes:
            if nca==2:  # 2D graphic
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(ac)+r'$'
                                                   for ac in ambient_coords]
            else: # 3D graphic
                labels = [str(ac) for ac in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:gaby7646,項目名稱:sage,代碼行數:104,代碼來源:vectorfield.py

示例4: _graphics

# 需要導入模塊: from sage.plot.graphics import Graphics [as 別名]
# 或者: from sage.plot.graphics.Graphics import _extra_kwds['axes_labels'] [as 別名]
    def _graphics(self, plot_curve, ambient_coords, thickness=1,
                  aspect_ratio='automatic', color='red', style='-',
                  label_axes=True):
        r"""
        Plot a 2D or 3D curve in a Cartesian graph with axes labeled by
        the ambient coordinates; it is invoked by the methods
        :meth:`plot` of
        :class:`~sage.manifolds.differentiable.curve.DifferentiableCurve`,
        and its subclasses
        (:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedCurve`,
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedAutoparallelCurve`,
        and
        :class:`~sage.manifolds.differentiable.integrated_curve.IntegratedGeodesic`).

        TESTS::

            sage: M = Manifold(2, 'R^2')
            sage: X.<x,y> = M.chart()
            sage: R.<t> = RealLine()
            sage: c = M.curve([cos(t), sin(t)], (t, 0, 2*pi), name='c')
            sage: graph = c._graphics([[1,2], [3,4]], [x,y])
            sage: graph._objects[0].xdata == [1,3]
            True
            sage: graph._objects[0].ydata == [2,4]
            True
            sage: graph._objects[0]._options['thickness'] == 1
            True
            sage: graph._extra_kwds['aspect_ratio'] == 'automatic'
            True
            sage: graph._objects[0]._options['rgbcolor'] == 'red'
            True
            sage: graph._objects[0]._options['linestyle'] == '-'
            True
            sage: l = [r'$'+latex(x)+r'$', r'$'+latex(y)+r'$']
            sage: graph._extra_kwds['axes_labels'] == l
            True

        """

        from sage.plot.graphics import Graphics
        from sage.plot.line import line
        from sage.manifolds.utilities import set_axes_labels


        #
        # The plot
        #
        n_pc = len(ambient_coords)
        resu = Graphics()
        resu += line(plot_curve, color=color, linestyle=style,
                     thickness=thickness)
        if n_pc == 2:  # 2D graphic
            resu.set_aspect_ratio(aspect_ratio)
            if label_axes:
                # We update the dictionary _extra_kwds (options to be passed
                # to show()), instead of using the method
                # Graphics.axes_labels() since the latter is not robust w.r.t.
                # graph addition
                resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
                                                   for pc in ambient_coords]
        else: # 3D graphic
            if aspect_ratio == 'automatic':
                aspect_ratio = 1
            resu.aspect_ratio(aspect_ratio)
            if label_axes:
                labels = [str(pc) for pc in ambient_coords]
                resu = set_axes_labels(resu, *labels)
        return resu
開發者ID:saraedum,項目名稱:sage-renamed,代碼行數:70,代碼來源:curve.py


注:本文中的sage.plot.graphics.Graphics._extra_kwds['axes_labels']方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。