當前位置: 首頁>>代碼示例>>Python>>正文


Python FrequencySeries.length_in_time方法代碼示例

本文整理匯總了Python中pycbc.types.FrequencySeries.length_in_time方法的典型用法代碼示例。如果您正苦於以下問題:Python FrequencySeries.length_in_time方法的具體用法?Python FrequencySeries.length_in_time怎麽用?Python FrequencySeries.length_in_time使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycbc.types.FrequencySeries的用法示例。


在下文中一共展示了FrequencySeries.length_in_time方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_waveform_filter

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_waveform_filter(out, template=None, **kwargs):
    """Return a frequency domain waveform filter for the specified approximant
    """
    n = len(out)

    input_params = props(template, **kwargs)

    if input_params['approximant'] in filter_approximants(_scheme.mgr.state):
        wav_gen = filter_wav[type(_scheme.mgr.state)]
        htilde = wav_gen[input_params['approximant']](out=out, **input_params)
        htilde.resize(n)
        htilde.chirp_length = get_waveform_filter_length_in_time(**input_params)
        htilde.length_in_time = htilde.chirp_length
        return htilde

    if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
        wav_gen = fd_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        hp.resize(n)
        out[0:len(hp)] = hp[:]
        hp = FrequencySeries(out, delta_f=hp.delta_f, copy=False)
        hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
        hp.length_in_time = hp.chirp_length
        return hp

    elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
        # N: number of time samples required
        N = (n-1)*2
        delta_f = 1.0 / (N * input_params['delta_t'])
        wav_gen = td_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        # taper the time series hp if required
        if ('taper' in input_params.keys() and \
            input_params['taper'] is not None):
            hp = wfutils.taper_timeseries(hp, input_params['taper'],
                                          return_lal=False)
        # total duration of the waveform
        tmplt_length = len(hp) * hp.delta_t
        # for IMR templates the zero of time is at max amplitude (merger)
        # thus the start time is minus the duration of the template from
        # lower frequency cutoff to merger, i.e. minus the 'chirp time'
        tChirp = - float( hp.start_time )  # conversion from LIGOTimeGPS
        hp.resize(N)
        k_zero = int(hp.start_time / hp.delta_t)
        hp.roll(k_zero)
        htilde = FrequencySeries(out, delta_f=delta_f, copy=False)
        fft(hp.astype(real_same_precision_as(htilde)), htilde)
        htilde.length_in_time = tmplt_length
        htilde.chirp_length = tChirp
        return htilde

    else:
        raise ValueError("Approximant %s not available" %
                            (input_params['approximant']))
開發者ID:juancalderonbustillo,項目名稱:pycbc,代碼行數:56,代碼來源:waveform.py

示例2: td_waveform_to_fd_waveform

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def td_waveform_to_fd_waveform(waveform, out=None, length=None,
                               buffer_length=100):
    """ Convert a time domain into a frequency domain waveform by FFT.
        As a waveform is assumed to "wrap" in the time domain one must be
        careful to ensure the waveform goes to 0 at both "boundaries". To
        ensure this is done correctly the waveform must have the epoch set such
        the merger time is at t=0 and the length of the waveform should be
        shorter than the desired length of the FrequencySeries (times 2 - 1)
        so that zeroes can be suitably pre- and post-pended before FFTing.
        If given, out is a memory array to be used as the output of the FFT.
        If not given memory is allocated internally.
        If present the length of the returned FrequencySeries is determined
        from the length out. If out is not given the length can be provided
        expicitly, or it will be chosen as the nearest power of 2. If choosing
        length explicitly the waveform length + buffer_length is used when
        choosing the nearest binary number so that some zero padding is always
        added.
    """
    # Figure out lengths and set out if needed
    if out is None:
        if length is None:
            N = pnutils.nearest_larger_binary_number(len(waveform) + \
                                                     buffer_length)
            n = int(N//2) + 1
        else:
            n = length
            N = (n-1)*2
        out = zeros(n, dtype=complex_same_precision_as(waveform))
    else:
        n = len(out)
        N = (n-1)*2
    delta_f =  1. / (N * waveform.delta_t)

    # total duration of the waveform
    tmplt_length = len(waveform) * waveform.delta_t
    if len(waveform) > N:
        err_msg = "The time domain template is longer than the intended "
        err_msg += "duration in the frequency domain. This situation is "
        err_msg += "not supported in this function. Please shorten the "
        err_msg += "waveform appropriately before calling this function or "
        err_msg += "increase the allowed waveform length. "
        err_msg += "Waveform length (in samples): {}".format(len(waveform))
        err_msg += ". Intended length: {}.".format(N)
        raise ValueError(err_msg)
    # for IMR templates the zero of time is at max amplitude (merger)
    # thus the start time is minus the duration of the template from
    # lower frequency cutoff to merger, i.e. minus the 'chirp time'
    tChirp = - float( waveform.start_time )  # conversion from LIGOTimeGPS
    waveform.resize(N)
    k_zero = int(waveform.start_time / waveform.delta_t)
    waveform.roll(k_zero)
    htilde = FrequencySeries(out, delta_f=delta_f, copy=False)
    fft(waveform.astype(real_same_precision_as(htilde)), htilde)
    htilde.length_in_time = tmplt_length
    htilde.chirp_length = tChirp
    return htilde
開發者ID:bhooshan-gadre,項目名稱:pycbc,代碼行數:58,代碼來源:waveform.py

示例3: get_waveform_filter

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_waveform_filter(out, template=None, **kwargs):
    """Return a frequency domain waveform filter for the specified approximant
    """
    n = len(out)

    input_params = props(template, **kwargs)

    if input_params['approximant'] in filter_approximants(_scheme.mgr.state):
        wav_gen = filter_wav[type(_scheme.mgr.state)]
        htilde = wav_gen[input_params['approximant']](out=out, **input_params)
        htilde.resize(n)
        htilde.chirp_length = get_waveform_filter_length_in_time(**input_params)
        htilde.length_in_time = htilde.chirp_length
        return htilde

    if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
        wav_gen = fd_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        hp.resize(n)
        out[0:len(hp)] = hp[:]
        hp = FrequencySeries(out, delta_f=hp.delta_f, copy=False)
        hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
        hp.length_in_time = hp.chirp_length
        return hp

    elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
        # N: number of time samples required
        N = (n-1)*2
        delta_f = 1.0 / (N * input_params['delta_t'])
        wav_gen = td_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        # taper the time series hp if required
        if ('taper' in input_params.keys() and \
            input_params['taper'] is not None):
            hp = wfutils.taper_timeseries(hp, input_params['taper'],
                                          return_lal=False)
        return td_waveform_to_fd_waveform(hp, out=out)

    else:
        raise ValueError("Approximant %s not available" %
                            (input_params['approximant']))
開發者ID:jakerobertandrews,項目名稱:pycbc,代碼行數:43,代碼來源:waveform.py

示例4: get_two_pol_waveform_filter

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_two_pol_waveform_filter(outplus, outcross, template, **kwargs):
    """Return a frequency domain waveform filter for the specified approximant.
    Unlike get_waveform_filter this function returns both h_plus and h_cross
    components of the waveform, which are needed for searches where h_plus
    and h_cross are not related by a simple phase shift.
    """
    n = len(outplus)

    # If we don't have an inclination column alpha3 might be used
    if not hasattr(template, 'inclination') and 'inclination' not in kwargs:
        if hasattr(template, 'alpha3'):
            kwargs['inclination'] = template.alpha3

    input_params = props(template, **kwargs)

    if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
        wav_gen = fd_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        hp.resize(n)
        hc.resize(n)
        outplus[0:len(hp)] = hp[:]
        hp = FrequencySeries(outplus, delta_f=hp.delta_f, copy=False)
        outcross[0:len(hc)] = hc[:]
        hc = FrequencySeries(outcross, delta_f=hc.delta_f, copy=False)
        hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
        hp.length_in_time = hp.chirp_length
        hc.chirp_length = hp.chirp_length
        hc.length_in_time = hp.length_in_time
        return hp, hc
    elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
        # N: number of time samples required
        N = (n-1)*2
        delta_f = 1.0 / (N * input_params['delta_t'])
        wav_gen = td_wav[type(_scheme.mgr.state)]
        hp, hc = wav_gen[input_params['approximant']](**input_params)
        # taper the time series hp if required
        if 'taper' in input_params.keys() and \
                input_params['taper'] is not None:
            hp = wfutils.taper_timeseries(hp, input_params['taper'],
                                          return_lal=False)
            hc = wfutils.taper_timeseries(hc, input_params['taper'],
                                          return_lal=False)
        # total duration of the waveform
        tmplt_length = len(hp) * hp.delta_t
        # for IMR templates the zero of time is at max amplitude (merger)
        # thus the start time is minus the duration of the template from
        # lower frequency cutoff to merger, i.e. minus the 'chirp time'
        tChirp = - float( hp.start_time )  # conversion from LIGOTimeGPS
        hp.resize(N)
        hc.resize(N)
        k_zero = int(hp.start_time / hp.delta_t)
        hp.roll(k_zero)
        hc.roll(k_zero)
        hp_tilde = FrequencySeries(outplus, delta_f=delta_f, copy=False)
        hc_tilde = FrequencySeries(outcross, delta_f=delta_f, copy=False)
        fft(hp.astype(real_same_precision_as(hp_tilde)), hp_tilde)
        fft(hc.astype(real_same_precision_as(hc_tilde)), hc_tilde)
        hp_tilde.length_in_time = tmplt_length
        hp_tilde.chirp_length = tChirp
        hc_tilde.length_in_time = tmplt_length
        hc_tilde.chirp_length = tChirp
        return hp_tilde, hc_tilde
    else:
        raise ValueError("Approximant %s not available" %
                            (input_params['approximant']))
開發者ID:bhooshan-gadre,項目名稱:pycbc,代碼行數:67,代碼來源:waveform.py


注:本文中的pycbc.types.FrequencySeries.length_in_time方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。