本文整理匯總了Python中pycbc.types.FrequencySeries.length_in_time方法的典型用法代碼示例。如果您正苦於以下問題:Python FrequencySeries.length_in_time方法的具體用法?Python FrequencySeries.length_in_time怎麽用?Python FrequencySeries.length_in_time使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pycbc.types.FrequencySeries
的用法示例。
在下文中一共展示了FrequencySeries.length_in_time方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_waveform_filter
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_waveform_filter(out, template=None, **kwargs):
"""Return a frequency domain waveform filter for the specified approximant
"""
n = len(out)
input_params = props(template, **kwargs)
if input_params['approximant'] in filter_approximants(_scheme.mgr.state):
wav_gen = filter_wav[type(_scheme.mgr.state)]
htilde = wav_gen[input_params['approximant']](out=out, **input_params)
htilde.resize(n)
htilde.chirp_length = get_waveform_filter_length_in_time(**input_params)
htilde.length_in_time = htilde.chirp_length
return htilde
if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
wav_gen = fd_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
hp.resize(n)
out[0:len(hp)] = hp[:]
hp = FrequencySeries(out, delta_f=hp.delta_f, copy=False)
hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
hp.length_in_time = hp.chirp_length
return hp
elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
# N: number of time samples required
N = (n-1)*2
delta_f = 1.0 / (N * input_params['delta_t'])
wav_gen = td_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
# taper the time series hp if required
if ('taper' in input_params.keys() and \
input_params['taper'] is not None):
hp = wfutils.taper_timeseries(hp, input_params['taper'],
return_lal=False)
# total duration of the waveform
tmplt_length = len(hp) * hp.delta_t
# for IMR templates the zero of time is at max amplitude (merger)
# thus the start time is minus the duration of the template from
# lower frequency cutoff to merger, i.e. minus the 'chirp time'
tChirp = - float( hp.start_time ) # conversion from LIGOTimeGPS
hp.resize(N)
k_zero = int(hp.start_time / hp.delta_t)
hp.roll(k_zero)
htilde = FrequencySeries(out, delta_f=delta_f, copy=False)
fft(hp.astype(real_same_precision_as(htilde)), htilde)
htilde.length_in_time = tmplt_length
htilde.chirp_length = tChirp
return htilde
else:
raise ValueError("Approximant %s not available" %
(input_params['approximant']))
示例2: td_waveform_to_fd_waveform
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def td_waveform_to_fd_waveform(waveform, out=None, length=None,
buffer_length=100):
""" Convert a time domain into a frequency domain waveform by FFT.
As a waveform is assumed to "wrap" in the time domain one must be
careful to ensure the waveform goes to 0 at both "boundaries". To
ensure this is done correctly the waveform must have the epoch set such
the merger time is at t=0 and the length of the waveform should be
shorter than the desired length of the FrequencySeries (times 2 - 1)
so that zeroes can be suitably pre- and post-pended before FFTing.
If given, out is a memory array to be used as the output of the FFT.
If not given memory is allocated internally.
If present the length of the returned FrequencySeries is determined
from the length out. If out is not given the length can be provided
expicitly, or it will be chosen as the nearest power of 2. If choosing
length explicitly the waveform length + buffer_length is used when
choosing the nearest binary number so that some zero padding is always
added.
"""
# Figure out lengths and set out if needed
if out is None:
if length is None:
N = pnutils.nearest_larger_binary_number(len(waveform) + \
buffer_length)
n = int(N//2) + 1
else:
n = length
N = (n-1)*2
out = zeros(n, dtype=complex_same_precision_as(waveform))
else:
n = len(out)
N = (n-1)*2
delta_f = 1. / (N * waveform.delta_t)
# total duration of the waveform
tmplt_length = len(waveform) * waveform.delta_t
if len(waveform) > N:
err_msg = "The time domain template is longer than the intended "
err_msg += "duration in the frequency domain. This situation is "
err_msg += "not supported in this function. Please shorten the "
err_msg += "waveform appropriately before calling this function or "
err_msg += "increase the allowed waveform length. "
err_msg += "Waveform length (in samples): {}".format(len(waveform))
err_msg += ". Intended length: {}.".format(N)
raise ValueError(err_msg)
# for IMR templates the zero of time is at max amplitude (merger)
# thus the start time is minus the duration of the template from
# lower frequency cutoff to merger, i.e. minus the 'chirp time'
tChirp = - float( waveform.start_time ) # conversion from LIGOTimeGPS
waveform.resize(N)
k_zero = int(waveform.start_time / waveform.delta_t)
waveform.roll(k_zero)
htilde = FrequencySeries(out, delta_f=delta_f, copy=False)
fft(waveform.astype(real_same_precision_as(htilde)), htilde)
htilde.length_in_time = tmplt_length
htilde.chirp_length = tChirp
return htilde
示例3: get_waveform_filter
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_waveform_filter(out, template=None, **kwargs):
"""Return a frequency domain waveform filter for the specified approximant
"""
n = len(out)
input_params = props(template, **kwargs)
if input_params['approximant'] in filter_approximants(_scheme.mgr.state):
wav_gen = filter_wav[type(_scheme.mgr.state)]
htilde = wav_gen[input_params['approximant']](out=out, **input_params)
htilde.resize(n)
htilde.chirp_length = get_waveform_filter_length_in_time(**input_params)
htilde.length_in_time = htilde.chirp_length
return htilde
if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
wav_gen = fd_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
hp.resize(n)
out[0:len(hp)] = hp[:]
hp = FrequencySeries(out, delta_f=hp.delta_f, copy=False)
hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
hp.length_in_time = hp.chirp_length
return hp
elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
# N: number of time samples required
N = (n-1)*2
delta_f = 1.0 / (N * input_params['delta_t'])
wav_gen = td_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
# taper the time series hp if required
if ('taper' in input_params.keys() and \
input_params['taper'] is not None):
hp = wfutils.taper_timeseries(hp, input_params['taper'],
return_lal=False)
return td_waveform_to_fd_waveform(hp, out=out)
else:
raise ValueError("Approximant %s not available" %
(input_params['approximant']))
示例4: get_two_pol_waveform_filter
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import length_in_time [as 別名]
def get_two_pol_waveform_filter(outplus, outcross, template, **kwargs):
"""Return a frequency domain waveform filter for the specified approximant.
Unlike get_waveform_filter this function returns both h_plus and h_cross
components of the waveform, which are needed for searches where h_plus
and h_cross are not related by a simple phase shift.
"""
n = len(outplus)
# If we don't have an inclination column alpha3 might be used
if not hasattr(template, 'inclination') and 'inclination' not in kwargs:
if hasattr(template, 'alpha3'):
kwargs['inclination'] = template.alpha3
input_params = props(template, **kwargs)
if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
wav_gen = fd_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
hp.resize(n)
hc.resize(n)
outplus[0:len(hp)] = hp[:]
hp = FrequencySeries(outplus, delta_f=hp.delta_f, copy=False)
outcross[0:len(hc)] = hc[:]
hc = FrequencySeries(outcross, delta_f=hc.delta_f, copy=False)
hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
hp.length_in_time = hp.chirp_length
hc.chirp_length = hp.chirp_length
hc.length_in_time = hp.length_in_time
return hp, hc
elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
# N: number of time samples required
N = (n-1)*2
delta_f = 1.0 / (N * input_params['delta_t'])
wav_gen = td_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
# taper the time series hp if required
if 'taper' in input_params.keys() and \
input_params['taper'] is not None:
hp = wfutils.taper_timeseries(hp, input_params['taper'],
return_lal=False)
hc = wfutils.taper_timeseries(hc, input_params['taper'],
return_lal=False)
# total duration of the waveform
tmplt_length = len(hp) * hp.delta_t
# for IMR templates the zero of time is at max amplitude (merger)
# thus the start time is minus the duration of the template from
# lower frequency cutoff to merger, i.e. minus the 'chirp time'
tChirp = - float( hp.start_time ) # conversion from LIGOTimeGPS
hp.resize(N)
hc.resize(N)
k_zero = int(hp.start_time / hp.delta_t)
hp.roll(k_zero)
hc.roll(k_zero)
hp_tilde = FrequencySeries(outplus, delta_f=delta_f, copy=False)
hc_tilde = FrequencySeries(outcross, delta_f=delta_f, copy=False)
fft(hp.astype(real_same_precision_as(hp_tilde)), hp_tilde)
fft(hc.astype(real_same_precision_as(hc_tilde)), hc_tilde)
hp_tilde.length_in_time = tmplt_length
hp_tilde.chirp_length = tChirp
hc_tilde.length_in_time = tmplt_length
hc_tilde.chirp_length = tChirp
return hp_tilde, hc_tilde
else:
raise ValueError("Approximant %s not available" %
(input_params['approximant']))