本文整理匯總了Python中pycbc.types.FrequencySeries.conj方法的典型用法代碼示例。如果您正苦於以下問題:Python FrequencySeries.conj方法的具體用法?Python FrequencySeries.conj怎麽用?Python FrequencySeries.conj使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pycbc.types.FrequencySeries
的用法示例。
在下文中一共展示了FrequencySeries.conj方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: welch
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import conj [as 別名]
def welch(timeseries, seg_len=4096, seg_stride=2048, window='hann',
avg_method='median', num_segments=None, require_exact_data_fit=False):
"""PSD estimator based on Welch's method.
Parameters
----------
timeseries : TimeSeries
Time series for which the PSD is to be estimated.
seg_len : int
Segment length in samples.
seg_stride : int
Separation between consecutive segments, in samples.
window : {'hann'}
Function used to window segments before Fourier transforming.
avg_method : {'median', 'mean', 'median-mean'}
Method used for averaging individual segment PSDs.
Returns
-------
psd : FrequencySeries
Frequency series containing the estimated PSD.
Raises
------
ValueError
For invalid choices of `seg_len`, `seg_stride` `window` and
`avg_method` and for inconsistent combinations of len(`timeseries`),
`seg_len` and `seg_stride`.
Notes
-----
See arXiv:gr-qc/0509116 for details.
"""
window_map = {
'hann': numpy.hanning
}
# sanity checks
if not window in window_map:
raise ValueError('Invalid window')
if not avg_method in ('mean', 'median', 'median-mean'):
raise ValueError('Invalid averaging method')
if type(seg_len) is not int or type(seg_stride) is not int \
or seg_len <= 0 or seg_stride <= 0:
raise ValueError('Segment length and stride must be positive integers')
if timeseries.precision == 'single':
fs_dtype = numpy.complex64
elif timeseries.precision == 'double':
fs_dtype = numpy.complex128
num_samples = len(timeseries)
if num_segments is None:
num_segments = int(num_samples // seg_stride)
# NOTE: Is this not always true?
if (num_segments - 1) * seg_stride + seg_len > num_samples:
num_segments -= 1
if not require_exact_data_fit:
data_len = (num_segments - 1) * seg_stride + seg_len
# Get the correct amount of data
if data_len < num_samples:
diff = num_samples - data_len
start = diff // 2
end = num_samples - diff // 2
# Want this to be integers so if diff is odd, catch it here.
if diff % 2:
start = start + 1
timeseries = timeseries[start:end]
num_samples = len(timeseries)
if data_len > num_samples:
err_msg = "I was asked to estimate a PSD on %d " %(data_len)
err_msg += "data samples. However the data provided only contains "
err_msg += "%d data samples." %(num_samples)
if num_samples != (num_segments - 1) * seg_stride + seg_len:
raise ValueError('Incorrect choice of segmentation parameters')
w = Array(window_map[window](seg_len).astype(timeseries.dtype))
# calculate psd of each segment
delta_f = 1. / timeseries.delta_t / seg_len
segment_tilde = FrequencySeries(numpy.zeros(seg_len / 2 + 1), \
delta_f=delta_f, dtype=fs_dtype)
segment_psds = []
for i in xrange(num_segments):
segment_start = i * seg_stride
segment_end = segment_start + seg_len
segment = timeseries[segment_start:segment_end]
assert len(segment) == seg_len
fft(segment * w, segment_tilde)
seg_psd = abs(segment_tilde * segment_tilde.conj()).numpy()
#halve the DC and Nyquist components to be consistent with TO10095
seg_psd[0] /= 2
seg_psd[-1] /= 2
#.........這裏部分代碼省略.........
示例2: inverse_spectrum_truncation
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import conj [as 別名]
def inverse_spectrum_truncation(psd, max_filter_len, low_frequency_cutoff=None, trunc_method=None):
"""Modify a PSD such that the impulse response associated with its inverse
square root is no longer than `max_filter_len` time samples. In practice
this corresponds to a coarse graining or smoothing of the PSD.
Parameters
----------
psd : FrequencySeries
PSD whose inverse spectrum is to be truncated.
max_filter_len : int
Maximum length of the time-domain filter in samples.
low_frequency_cutoff : {None, int}
Frequencies below `low_frequency_cutoff` are zeroed in the output.
trunc_method : {None, 'hann'}
Function used for truncating the time-domain filter.
None produces a hard truncation at `max_filter_len`.
Returns
-------
psd : FrequencySeries
PSD whose inverse spectrum has been truncated.
Raises
------
ValueError
For invalid types or values of `max_filter_len` and `low_frequency_cutoff`.
Notes
-----
See arXiv:gr-qc/0509116 for details.
"""
# sanity checks
if type(max_filter_len) is not int or max_filter_len <= 0:
raise ValueError('max_filter_len must be a positive integer')
if low_frequency_cutoff is not None and low_frequency_cutoff < 0 \
or low_frequency_cutoff > psd.sample_frequencies[-1]:
raise ValueError('low_frequency_cutoff must be within the bandwidth of the PSD')
N = (len(psd)-1)*2
inv_asd = FrequencySeries((1. / psd)**0.5, delta_f=psd.delta_f, \
dtype=complex_same_precision_as(psd))
inv_asd[0] = 0
inv_asd[N/2] = 0
q = TimeSeries(numpy.zeros(N), delta_t=(N / psd.delta_f), \
dtype=real_same_precision_as(psd))
if low_frequency_cutoff:
kmin = int(low_frequency_cutoff / psd.delta_f)
inv_asd[0:kmin] = 0
ifft(inv_asd, q)
trunc_start = max_filter_len / 2
trunc_end = N - max_filter_len / 2
if trunc_method == 'hann':
trunc_window = Array(numpy.hanning(max_filter_len), dtype=q.dtype)
q[0:trunc_start] *= trunc_window[max_filter_len/2:max_filter_len]
q[trunc_end:N] *= trunc_window[0:max_filter_len/2]
q[trunc_start:trunc_end] = 0
psd_trunc = FrequencySeries(numpy.zeros(len(psd)), delta_f=psd.delta_f, \
dtype=complex_same_precision_as(psd))
fft(q, psd_trunc)
psd_trunc *= psd_trunc.conj()
psd_out = 1. / abs(psd_trunc)
return psd_out