當前位置: 首頁>>代碼示例>>Python>>正文


Python FrequencySeries.data[kmin:kmax]方法代碼示例

本文整理匯總了Python中pycbc.types.FrequencySeries.data[kmin:kmax]方法的典型用法代碼示例。如果您正苦於以下問題:Python FrequencySeries.data[kmin:kmax]方法的具體用法?Python FrequencySeries.data[kmin:kmax]怎麽用?Python FrequencySeries.data[kmin:kmax]使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pycbc.types.FrequencySeries的用法示例。


在下文中一共展示了FrequencySeries.data[kmin:kmax]方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_fd_qnm

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import data[kmin:kmax] [as 別名]
def get_fd_qnm(template=None, **kwargs):
    """Return a frequency domain damped sinusoid.

    Parameters
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    f_0 : float
        The ringdown-frequency.
    tau : float
        The damping time of the sinusoid.
    amp : float
        The amplitude of the ringdown (constant for now).
    phi : float
        The initial phase of the ringdown. Should also include the information
        from the azimuthal angle (phi_0 + m*Phi).
    inclination : {None, float}, optional
        Inclination of the system in radians for the spherical harmonics.
    l : {2, int}, optional
        l mode for the spherical harmonics. Default is l=2.
    m : {2, int}, optional
        m mode for the spherical harmonics. Default is m=2.
    t_0 :  {0, float}, optional
        The starting time of the ringdown.
    delta_f : {None, float}, optional
        The frequency step used to generate the ringdown.
        If None, it will be set to the inverse of the time at which the
        amplitude is 1/1000 of the peak amplitude.
    f_lower: {None, float}, optional
        The starting frequency of the output frequency series.
        If None, it will be set to delta_f.
    f_final : {None, float}, optional
        The ending frequency of the output frequency series.
        If None, it will be set to the frequency at which the amplitude is
        1/1000 of the peak amplitude.

    Returns
    -------
    hplustilde: FrequencySeries
        The plus phase of the ringdown in frequency domain.
    hcrosstilde: FrequencySeries
        The cross phase of the ringdown in frequency domain.
    """

    input_params = props(template, qnm_required_args, **kwargs)

    f_0 = input_params.pop('f_0')
    tau = input_params.pop('tau')
    amp = input_params.pop('amp')
    phi = input_params.pop('phi')
    # the following have defaults, and so will be populated
    t_0 = input_params.pop('t_0')
    # the following may not be in input_params
    inc = input_params.pop('inclination', None)
    l = input_params.pop('l', 2)
    m = input_params.pop('m', 2)
    delta_f = input_params.pop('delta_f', None)
    f_lower = input_params.pop('f_lower', None)
    f_final = input_params.pop('f_final', None)

    if not delta_f:
        delta_f = 1. / qnm_time_decay(tau, 1./1000)
    if not f_lower:
        f_lower = delta_f
        kmin = 0
    else:
        kmin = int(f_lower / delta_f)
    if not f_final:
        f_final = qnm_freq_decay(f_0, tau, 1./1000)
    if f_final > max_freq:
        f_final = max_freq
    kmax = int(f_final / delta_f) + 1

    freqs = numpy.arange(kmin, kmax)*delta_f
    if inc is not None:
        Y_plus, Y_cross = spher_harms(l, m, inc)
    else:
        Y_plus, Y_cross = 1, 1

    denominator = 1 + (4j * pi * freqs * tau) - (4 * pi_sq * ( freqs*freqs - f_0*f_0) * tau*tau)
    norm = amp * tau / denominator
    if t_0 != 0:
        time_shift = numpy.exp(-1j * two_pi * freqs * t_0)
        norm *= time_shift

    # Analytical expression for the Fourier transform of the ringdown (damped sinusoid)
    hp_tilde = norm * Y_plus * ( (1 + 2j * pi * freqs * tau) * numpy.cos(phi)
                                        - two_pi * f_0 * tau * numpy.sin(phi) )
    hc_tilde = norm * Y_cross * ( (1 + 2j * pi * freqs * tau) * numpy.sin(phi)
                                        + two_pi * f_0 * tau * numpy.cos(phi) )

    outplus = FrequencySeries(zeros(kmax, dtype=complex128), delta_f=delta_f)
    outcross = FrequencySeries(zeros(kmax, dtype=complex128), delta_f=delta_f)
    outplus.data[kmin:kmax] = hp_tilde
    outcross.data[kmin:kmax] = hc_tilde

    return outplus, outcross
開發者ID:bhooshan-gadre,項目名稱:pycbc,代碼行數:100,代碼來源:ringdown.py

示例2: get_fd_qnm

# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import data[kmin:kmax] [as 別名]
def get_fd_qnm(template=None, **kwargs):
    """Return a frequency domain damped sinusoid.

    Parameters
    ----------
    template: object
        An object that has attached properties. This can be used to substitute
        for keyword arguments. A common example would be a row in an xml table.
    f_0 : float
        The ringdown-frequency.
    tau : float
        The damping time of the sinusoid.
    t_0 :  {0, float}, optional
        The starting time of the ringdown.
    phi_0 : {0, float}, optional
        The initial phase of the ringdown.
    amp : {1, float}, optional
        The amplitude of the ringdown (constant for now).
    delta_f : {None, float}, optional
        The frequency step used to generate the ringdown.
        If None, it will be set to the inverse of the time at which the
        amplitude is 1/1000 of the peak amplitude.
    f_lower: {None, float}, optional
        The starting frequency of the output frequency series.
        If None, it will be set to delta_f.
    f_final : {None, float}, optional
        The ending frequency of the output frequency series.
        If None, it will be set to the frequency at which the amplitude is 
        1/1000 of the peak amplitude.

    Returns
    -------
    hplustilde: FrequencySeries
        The plus phase of the ringdown in frequency domain.
    hcrosstilde: FrequencySeries
        The cross phase of the ringdown in frequency domain.
    """

    input_params = props_ringdown(template,**kwargs)

    # get required args
    try:
        f_0 = input_params['f_0']
    except KeyError:
        raise ValueError('f_0 is required')
    try:
        tau = input_params['tau']
    except KeyError:
        raise ValueError('tau is required')
    # get optional args
    # the following have defaults, and so will be populated
    t_0 = input_params.pop('t_0')
    phi_0 = input_params.pop('phi_0')
    amp = input_params.pop('amp')
    # the following may not be in input_params
    delta_f = input_params.pop('delta_f', None)
    f_lower = input_params.pop('f_lower', None)
    f_final = input_params.pop('f_final', None)

    if delta_f is None:
        delta_f = 1. / qnm_time_decay(tau, 1./1000)
    if f_lower is None:
        f_lower = delta_f
        kmin = 0
    else:
        kmin = int(f_lower / delta_f)
    if f_final is None:
        f_final = qnm_freq_decay(f_0, tau, 1./1000)
    kmax = int(f_final / delta_f) + 1

    pi = numpy.pi
    two_pi = 2 * numpy.pi
    pi_sq = numpy.pi * numpy.pi

    freqs = numpy.arange(kmin, kmax)*delta_f

    denominator = 1 + (4j * pi * freqs * tau) - (4 * pi_sq * ( freqs*freqs - f_0*f_0) * tau*tau)
    norm = amp * tau / denominator
    if t_0 != 0:
        time_shift = numpy.exp(-1j * two_pi * freqs * t_0) 
        norm *= time_shift

    hp_tilde = norm * ( (1 + 2j * pi * freqs * tau) * numpy.cos(phi_0) - two_pi * f_0 * tau * numpy.sin(phi_0) )
    hc_tilde = norm * ( (1 + 2j * pi * freqs * tau) * numpy.sin(phi_0) + two_pi * f_0 * tau * numpy.cos(phi_0) )

    hplustilde = FrequencySeries(zeros(kmax, dtype=complex128), delta_f=delta_f)
    hcrosstilde = FrequencySeries(zeros(kmax, dtype=complex128), delta_f=delta_f)
    hplustilde.data[kmin:kmax] = hp_tilde
    hcrosstilde.data[kmin:kmax] = hc_tilde

    return hplustilde, hcrosstilde
開發者ID:gayathrigcc,項目名稱:pycbc,代碼行數:93,代碼來源:ringdown.py


注:本文中的pycbc.types.FrequencySeries.data[kmin:kmax]方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。