本文整理匯總了Python中pycbc.types.FrequencySeries.astype方法的典型用法代碼示例。如果您正苦於以下問題:Python FrequencySeries.astype方法的具體用法?Python FrequencySeries.astype怎麽用?Python FrequencySeries.astype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pycbc.types.FrequencySeries
的用法示例。
在下文中一共展示了FrequencySeries.astype方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_waveform_filter
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import astype [as 別名]
def get_waveform_filter(out, template=None, **kwargs):
"""Return a frequency domain waveform filter for the specified approximant
"""
n = len(out)
input_params = props(template, **kwargs)
if input_params['approximant'] in filter_approximants(_scheme.mgr.state):
wav_gen = filter_wav[type(_scheme.mgr.state)]
htilde = wav_gen[input_params['approximant']](out=out, **input_params)
htilde.resize(n)
htilde.chirp_length = get_waveform_filter_length_in_time(**input_params)
htilde.length_in_time = htilde.chirp_length
return htilde
if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
wav_gen = fd_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
hp.resize(n)
out[0:len(hp)] = hp[:]
hp = FrequencySeries(out, delta_f=hp.delta_f, copy=False)
hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
hp.length_in_time = hp.chirp_length
return hp
elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
# N: number of time samples required
N = (n-1)*2
delta_f = 1.0 / (N * input_params['delta_t'])
wav_gen = td_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
# taper the time series hp if required
if ('taper' in input_params.keys() and \
input_params['taper'] is not None):
hp = wfutils.taper_timeseries(hp, input_params['taper'],
return_lal=False)
# total duration of the waveform
tmplt_length = len(hp) * hp.delta_t
# for IMR templates the zero of time is at max amplitude (merger)
# thus the start time is minus the duration of the template from
# lower frequency cutoff to merger, i.e. minus the 'chirp time'
tChirp = - float( hp.start_time ) # conversion from LIGOTimeGPS
hp.resize(N)
k_zero = int(hp.start_time / hp.delta_t)
hp.roll(k_zero)
htilde = FrequencySeries(out, delta_f=delta_f, copy=False)
fft(hp.astype(real_same_precision_as(htilde)), htilde)
htilde.length_in_time = tmplt_length
htilde.chirp_length = tChirp
return htilde
else:
raise ValueError("Approximant %s not available" %
(input_params['approximant']))
示例2: _imrphenombfreq
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import astype [as 別名]
def _imrphenombfreq(**p):
import lalinspiral
params = lalinspiral.InspiralTemplate()
m1 = p['mass1']
m2 = p['mass2']
mc, et = pnutils.mass1_mass2_to_mchirp_eta(m1, m2)
params.approximant = lalsimulation.IMRPhenomB
params.fLower = p['f_lower']
params.eta = et
params.distance = p['distance'] * lal.PC_SI * 1e6
params.mass1 = m1
params.mass2 = m2
params.spin1[2] = p['spin1z']
params.spin2[2] = p['spin2z']
params.startPhase = p['coa_phase']*2 - lal.PI
params.startTime = 0
params.tSampling = 8192
N = int(params.tSampling / p['delta_f'])
n = N / 2
# Create temporary memory to hold the results and call the generator
hpt = zeros(N, dtype=float32)
hct = zeros(N, dtype=float32)
hpt=hpt.lal()
hct=hct.lal()
lalinspiral.BBHPhenWaveBFreqDomTemplates(hpt, hct, params)
# Copy the results to a complex frequencyseries format
hctc = FrequencySeries(zeros(n, dtype=complex64), delta_f=p['delta_f'])
hptc = FrequencySeries(zeros(n, dtype=complex64), delta_f=p['delta_f'])
hptc.data += hpt.data[0:n]
hptc.data[1:n] += hpt.data[N:N-n:-1] * 1j
hctc.data += hct.data[0:n]
hctc.data[1:n] += hct.data[N:N-n:-1] * 1j
return hptc.astype(complex128), hctc.astype(complex128)
示例3: get_two_pol_waveform_filter
# 需要導入模塊: from pycbc.types import FrequencySeries [as 別名]
# 或者: from pycbc.types.FrequencySeries import astype [as 別名]
def get_two_pol_waveform_filter(outplus, outcross, template, **kwargs):
"""Return a frequency domain waveform filter for the specified approximant.
Unlike get_waveform_filter this function returns both h_plus and h_cross
components of the waveform, which are needed for searches where h_plus
and h_cross are not related by a simple phase shift.
"""
n = len(outplus)
# If we don't have an inclination column alpha3 might be used
if not hasattr(template, 'inclination') and 'inclination' not in kwargs:
if hasattr(template, 'alpha3'):
kwargs['inclination'] = template.alpha3
input_params = props(template, **kwargs)
if input_params['approximant'] in fd_approximants(_scheme.mgr.state):
wav_gen = fd_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
hp.resize(n)
hc.resize(n)
outplus[0:len(hp)] = hp[:]
hp = FrequencySeries(outplus, delta_f=hp.delta_f, copy=False)
outcross[0:len(hc)] = hc[:]
hc = FrequencySeries(outcross, delta_f=hc.delta_f, copy=False)
hp.chirp_length = get_waveform_filter_length_in_time(**input_params)
hp.length_in_time = hp.chirp_length
hc.chirp_length = hp.chirp_length
hc.length_in_time = hp.length_in_time
return hp, hc
elif input_params['approximant'] in td_approximants(_scheme.mgr.state):
# N: number of time samples required
N = (n-1)*2
delta_f = 1.0 / (N * input_params['delta_t'])
wav_gen = td_wav[type(_scheme.mgr.state)]
hp, hc = wav_gen[input_params['approximant']](**input_params)
# taper the time series hp if required
if 'taper' in input_params.keys() and \
input_params['taper'] is not None:
hp = wfutils.taper_timeseries(hp, input_params['taper'],
return_lal=False)
hc = wfutils.taper_timeseries(hc, input_params['taper'],
return_lal=False)
# total duration of the waveform
tmplt_length = len(hp) * hp.delta_t
# for IMR templates the zero of time is at max amplitude (merger)
# thus the start time is minus the duration of the template from
# lower frequency cutoff to merger, i.e. minus the 'chirp time'
tChirp = - float( hp.start_time ) # conversion from LIGOTimeGPS
hp.resize(N)
hc.resize(N)
k_zero = int(hp.start_time / hp.delta_t)
hp.roll(k_zero)
hc.roll(k_zero)
hp_tilde = FrequencySeries(outplus, delta_f=delta_f, copy=False)
hc_tilde = FrequencySeries(outcross, delta_f=delta_f, copy=False)
fft(hp.astype(real_same_precision_as(hp_tilde)), hp_tilde)
fft(hc.astype(real_same_precision_as(hc_tilde)), hc_tilde)
hp_tilde.length_in_time = tmplt_length
hp_tilde.chirp_length = tChirp
hc_tilde.length_in_time = tmplt_length
hc_tilde.chirp_length = tChirp
return hp_tilde, hc_tilde
else:
raise ValueError("Approximant %s not available" %
(input_params['approximant']))