本文整理匯總了Python中pybrain.supervised.RPropMinusTrainer.trainOnDataset方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.trainOnDataset方法的具體用法?Python RPropMinusTrainer.trainOnDataset怎麽用?Python RPropMinusTrainer.trainOnDataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pybrain.supervised.RPropMinusTrainer
的用法示例。
在下文中一共展示了RPropMinusTrainer.trainOnDataset方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: learn
# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import trainOnDataset [as 別名]
#.........這裏部分代碼省略.........
self.dictIn["WORD_"+word]=index
index+=1
self.TOTALSIZEOFSENTENCEFeature=index
f=open(self.FileNameofNumSentenceFeature,"wb")
pickle.dump(self.TOTALSIZEOFSENTENCEFeature,f)
f.close()
elif self.isUseSentenceRepresentationInsteadofBOW:
index=0
for i in range(0,LSTMWithBOWTracker.D2V_VECTORSIZE):
self.dictIn[str(index)+"thElemPV"]=index
index+=1
index=0
for i in range(0,LSTMWithBOWTracker.D2V_VECTORSIZE):
self.dictIn[str(index)+"thAvrWord"]=index
index+=1
assert self.D2V_VECTORSIZE == LSTMWithBOWTracker.D2V_VECTORSIZE, "D2V_VECTORSIZE is restrected to be same over the class"
else:
assert False, "Unexpected block"
#--(sub input vector 3) Features M1s defined
index=0
if self.isEnableToUseM1sFeature:
rejisteredFeatures=self.__rejisterM1sInputFeatureLabel(self.tagsets,dataset)
for rFeature in rejisteredFeatures:
assert rFeature not in self.dictIn, rFeature +" already registered in input vector. Use different label name. "
self.dictIn[rFeature]=index
index+=1
self.TOTALSIZEOFM1DEFINEDFeature=index
f=open(self.FileNameofNumM1Feature,"wb")
pickle.dump(self.TOTALSIZEOFM1DEFINEDFeature,f)
f.close()
print "inputSize:"+str(len(self.dictIn.keys()))
assert self.dictIn["CLASS_INFO"] == 0, "Unexpected index CLASS_INFO should has value 0"
assert self.dictIn["CLASS_Fort Siloso"] == 334, "Unexpected index CLASS_Fort Siloso should has value 334"
assert self.dictIn["CLASS_Yunnan"] == 1344, "Unexpected index CLASS_Yunnan should has value 1611"
#--write
fileObject = open('dictInput.pic', 'w')
pickle.dump(self.dictIn, fileObject)
fileObject.close()
fileObject = open('dictOutput.pic', 'w')
pickle.dump(self.dictOut, fileObject)
fileObject.close()
#Build RNN frame work
print "Start learning Network"
#Capability of network is: (30 hidden units can represents 1048576 relations) wherease (10 hidden units can represents 1024)
#Same to Henderson (http://www.aclweb.org/anthology/W13-4073)?
net = buildNetwork(len(self.dictIn.keys()), numberOfHiddenUnit, len(self.dictOut.keys()), hiddenclass=LSTMLayer, outclass=SigmoidLayer, outputbias=False, recurrent=True)
#Train network
#-convert training data into sequence of vector
convDataset=[]#[call][uttr][input,targetvec]
iuttr=0
convCall=[]
for elemDataset in dataset:
for call in elemDataset:
for (uttr,label) in call:
if self.isIgnoreUtterancesNotRelatedToMainTask:
if uttr['segment_info']['target_bio'] == "O":
continue
#-input
convInput=self._translateUtteranceIntoInputVector(uttr,call)
#-output
convOutput=[0.0]*len(self.dictOut.keys())#Occured:+1, Not occured:0
if "frame_label" in label:
for slot in label["frame_label"].keys():
for value in label["frame_label"][slot]:
convOutput[self.dictOut[uttr["segment_info"]["topic"]+"_"+slot+"_"+value]]=1
#-post proccess
if self.isSeparateDialogIntoSubDialog:
if uttr['segment_info']['target_bio'] == "B":
if len(convCall) > 0:
convDataset.append(convCall)
convCall=[]
convCall.append([convInput,convOutput])
#print "Converted utterance" + str(iuttr)
iuttr+=1
if not self.isSeparateDialogIntoSubDialog:
if len(convCall) > 0:
convDataset.append(convCall)
convCall=[]
#Online learning
trainer = RPropMinusTrainer(net,weightdecay=weightdecayw)
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
for i in xrange(CYCLES):
#Shuffle order
ds = SequentialDataSet(len(self.dictIn.keys()),len(self.dictOut.keys()))
datInd=range(0,len(convDataset))
random.shuffle(datInd)#Backpropergation already implemeted data shuffling, however though RpropMinus don't.
for ind in datInd:
ds.newSequence()
for convuttr in convDataset[ind]:
ds.addSample(convuttr[0],convuttr[1])
#Evaluation and Train
epoch = (i+1) * EPOCHS_PER_CYCLE
print "\r epoch {}/{} Error={}".format(epoch, EPOCHS,trainer.testOnData(dataset=ds))
stdout.flush()
trainer.trainOnDataset(dataset=ds,epochs=EPOCHS_PER_CYCLE)
NetworkWriter.writeToFile(trainer.module, "LSTM_"+"Epoche"+str(i+1)+".rnnw")
NetworkWriter.writeToFile(trainer.module, "LSTM.rnnw")