當前位置: 首頁>>代碼示例>>Python>>正文


Python RPropMinusTrainer.testOnData方法代碼示例

本文整理匯總了Python中pybrain.supervised.RPropMinusTrainer.testOnData方法的典型用法代碼示例。如果您正苦於以下問題:Python RPropMinusTrainer.testOnData方法的具體用法?Python RPropMinusTrainer.testOnData怎麽用?Python RPropMinusTrainer.testOnData使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pybrain.supervised.RPropMinusTrainer的用法示例。


在下文中一共展示了RPropMinusTrainer.testOnData方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def main():
	generated_data = [0 for i in range(10000)]
	rate, data = get_data_from_wav("../../data/natabhairavi_violin.wav")
	data = data[1000:190000]
	print("Got wav")
	ds = SequentialDataSet(1, 1)
	for sample, next_sample in zip(data, cycle(data[1:])):
	    ds.addSample(sample, next_sample)

	net = buildNetwork(1, 5, 1, 
                   hiddenclass=LSTMLayer, outputbias=False, recurrent=True)

	trainer = RPropMinusTrainer(net, dataset=ds)
	train_errors = [] # save errors for plotting later
	EPOCHS_PER_CYCLE = 5
	CYCLES = 10
	EPOCHS = EPOCHS_PER_CYCLE * CYCLES
	for i in xrange(CYCLES):
	    trainer.trainEpochs(EPOCHS_PER_CYCLE)
	    train_errors.append(trainer.testOnData())
	    epoch = (i+1) * EPOCHS_PER_CYCLE
	    print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
	    stdout.flush()

	# predict new values
	old_sample = [100]

	for i in xrange(500000):
		new_sample = net.activate(old_sample)
		old_sample = new_sample
		generated_data[i] = new_sample[0]
		print(new_sample)
	
	wavfile.write("../../output/test.wav", rate, np.array(generated_data))
開發者ID:cy94,項目名稱:ml2,代碼行數:36,代碼來源:rnn.py

示例2: train

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def train(d, cycles=100, epochs_per_cycle=7):
    ds = SequentialDataSet(1, 1)
    net = buildNetwork(1, 5, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=False)

    for sample, next_sample in zip(d, cycle(d[1:])):
        ds.addSample(sample, next_sample)

    trainer = RPropMinusTrainer(net, dataset=ds)
    train_errors = []  # save errors for plotting later
    for i in xrange(cycles):
        trainer.trainEpochs(epochs_per_cycle)
        train_errors.append(trainer.testOnData())
        stdout.flush()

    return net, train_errors
開發者ID:Morgaroth,項目名稱:msi_lab2,代碼行數:17,代碼來源:zadanie.py

示例3: train

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def train (ds, net):
	# Train the network 
	trainer = RPropMinusTrainer(net, dataset=ds)
	train_errors = [] # save errors for plotting later
	EPOCHS_PER_CYCLE = 5
	CYCLES = 100
	EPOCHS = EPOCHS_PER_CYCLE * CYCLES
	for i in xrange(CYCLES):
	    trainer.trainEpochs(EPOCHS_PER_CYCLE)
	    error = trainer.testOnData()
	    train_errors.append(error)
	    epoch = (i+1) * EPOCHS_PER_CYCLE
	    print("\r epoch {}/{}".format(epoch, EPOCHS))
	    stdout.flush()

	# print("final error =", train_errors[-1])

	return train_errors, EPOCHS, EPOCHS_PER_CYCLE
開發者ID:DUTANGx,項目名稱:GI15-Group-Project-Time-Series,代碼行數:20,代碼來源:timeseries.py

示例4: handle

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
    def handle(self, *args, **options):
        ticker = args[0]
        print("****** STARTING PREDICTOR " + ticker + " ******* ")
        prices = Price.objects.filter(symbol=ticker).order_by('-created_on').values_list('price',flat=True)
        data = normalization(list(prices[0:NUM_MINUTES_BACK].reverse()))
        data = [ int(x * MULT_FACTOR) for x in data]
        print(data)

        ds = SupervisedDataSet(5, 1)
        try:
            for i,val in enumerate(data):
                DS.addSample((data[i], data[i+1], data[i+2], data[i+3], data[i+4]), (data[i+5],))
        except Exception:
            pass;

        net = buildNetwork(5, 40, 1, 
                           hiddenclass=LSTMLayer, outputbias=False, recurrent=True)

        trainer = RPropMinusTrainer(net, dataset=ds)
        train_errors = [] # save errors for plotting later
        EPOCHS_PER_CYCLE = 5
        CYCLES = 100
        EPOCHS = EPOCHS_PER_CYCLE * CYCLES
        for i in xrange(CYCLES):
            trainer.trainEpochs(EPOCHS_PER_CYCLE)
            train_errors.append(trainer.testOnData())
            epoch = (i+1) * EPOCHS_PER_CYCLE
            print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
            stdout.flush()

        print()
        print("final error =", train_errors[-1])

        for sample, target in ds.getSequenceIterator(0):
            show_pred_sample = net.activate(sample) / MULT_FACTOR
            show_sample = sample / MULT_FACTOR
            show_target = target / MULT_FACTOR
            show_diff = show_pred_sample - show_target
            show_diff_pct = 100 * show_diff / show_pred_sample
            print("{} => {}, act {}. ({}%)".format(show_sample[0],round(show_pred_sample[0],3),show_target[0],int(round(show_diff_pct[0],0))))
開發者ID:AnthonyNystrom,項目名稱:pytrader,代碼行數:42,代碼來源:predict_price_v1a.py

示例5: say_hello_text

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def say_hello_text(username = "World",text="You are good"):

    object_data_new = pd.read_csv('/Users/ruiyun_zhou/Documents/cmpe-274/data/data.csv')
    data_area_new = object_data_new[object_data_new.Area==username]
    data_area_new_1=data_area_new[data_area_new.Disease== text]
    data_list_new = data_area_new_1['Count'].values.tolist()
    print data_list_new.__len__()
    data_list=data_list_new
    ds = SequentialDataSet(1,1)
    isZero=0;
    for sample,next_sample in zip(data_list,cycle(data_list[1:])):
        ds.addSample(sample, next_sample)
        if sample:
            isZero=1

    if(isZero==0):
        return '[0, 0]'

    net = buildNetwork(1,5,1,hiddenclass=LSTMLayer,outputbias=False,recurrent=True)
    trainer = RPropMinusTrainer(net, dataset=ds)
    train_errors = [] # save errors for plotting later
    EPOCHS_PER_CYCLE = 5
    CYCLES = 10
    EPOCHS = EPOCHS_PER_CYCLE * CYCLES
    for i in xrange(CYCLES):
        print "Doing epoch %d" %i
        trainer.trainEpochs(EPOCHS_PER_CYCLE)
        train_errors.append(trainer.testOnData())
        epoch = (i+1) * EPOCHS_PER_CYCLE
#    return '<p>%d</p>\n' % (data_list_new.__len__())
#        print("final error =", train_errors[-1])
#    print "Value for last week is %4.1d" % abs(data_list[-1])
#    print "Value for next week is %4.1d" % abs(net.activate(data_list[-1]))
#    result = (abs(data_list[-1]))
    result = (abs(net.activate(data_list[-1])))
    result_1 = (abs(net.activate(result)))
    return '[%d, %d]' % (result,result_1)
開發者ID:farcryzry,項目名稱:cmpe-274,代碼行數:39,代碼來源:application.py

示例6: train

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def train(data,name):
    ds = SequentialDataSet(1, 1)
    for sample, next_sample in zip(data, cycle(data[1:])):
        ds.addSample(sample, next_sample)
    net = buildNetwork(1, 200, 1, hiddenclass=LSTMLayer, outputbias=False, recurrent=True)

    trainer = RPropMinusTrainer(net, dataset=ds)
    train_errors = [] # save errors for plotting later
    EPOCHS_PER_CYCLE = 5
    CYCLES = 20
    EPOCHS = EPOCHS_PER_CYCLE * CYCLES
    store=[]
    for i in xrange(CYCLES):
        trainer.trainEpochs(EPOCHS_PER_CYCLE)
        train_errors.append(trainer.testOnData())
        epoch = (i+1) * EPOCHS_PER_CYCLE
        print("\r epoch {}/{}".format(epoch, EPOCHS))
        print tm.time()-atm
        stdout.flush() 
    for sample, target in ds.getSequenceIterator(0):
        store.append(net.activate(sample))
    abcd=pd.DataFrame(store)
    abcd.to_csv(pwd+"lstmdata/"+name+".csv",encoding='utf-8')
    print "result printed to file"
開發者ID:elishaROBINSON,項目名稱:stock_Prediction_Neural_net,代碼行數:26,代碼來源:neural_net_train&store_data.py

示例7: RPropMinusTrainer

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
from pybrain.supervised import RPropMinusTrainer
from sys import stdout


print 'Starting to train neural network. . .'
trainer = RPropMinusTrainer(net, dataset=ds)
train_errors = []  # save errors for plotting later
EPOCHS_PER_CYCLE = 2
#CYCLES = 200
CYCLES = 100
EPOCHS = EPOCHS_PER_CYCLE * CYCLES
print 'Entering loop. . .'
for i in xrange(CYCLES):
    # Does the training
    trainer.trainEpochs(EPOCHS_PER_CYCLE)
    train_errors.append(trainer.testOnData())
    epoch = (i + 1) * EPOCHS_PER_CYCLE
    print 'i: ', i
    print ('\r epoch {}/{}'.format(epoch, EPOCHS))

    stdout.flush()
print 'Exit loop'
print ''

print 'final error =', train_errors[-1]

# Plot the errors (note that in this simple toy example,
# we are testing and training on the same dataset, which
# is of course not what you'd do for a real project!):

import matplotlib.pyplot as plt
開發者ID:maranemil,項目名稱:Midi-AI-Melody-Generator,代碼行數:33,代碼來源:ai-melody-composer.py

示例8: rnn

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
def rnn():
    # load dataframe from csv file
    df = pi.load_data_frame('../../data/NABIL.csv')
    # column name to match with indicator calculating modules
    # TODO: resolve issue with column name
    df.columns = [
        'Transactions',
        'Traded_Shares',
        'Traded_Amount',
        'High',
        'Low',
        'Close']
     
    data = df.Close.values
    # TODO: write min_max normalization
    # normalization
    # cp = dataframe.pop(' Close Price')
    # x = cp.values
    temp = np.array(data).reshape(len(data),1)
    min_max_scaler = preprocessing.MinMaxScaler()
    data = min_max_scaler.fit_transform(temp)
    # dataframe[' Close Price'] = x_scaled
     
    # prepate sequential dataset for pyBrain rnn network
    ds = SequentialDataSet(1, 1)
    for sample, next_sample in zip(data, cycle(data[1:])):
        ds.addSample(sample, next_sample)
     
    # build rnn network with LSTM layer
    # if saved network is available
    if(os.path.isfile('random.xml')):
        net = NetworkReader.readFrom('network.xml')
    else:
        net = buildNetwork(1, 20, 1, 
                           hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
     
    # build trainer
    trainer = RPropMinusTrainer(net, dataset=ds, verbose = True)
    train_errors = [] # save errors for plotting later
    EPOCHS_PER_CYCLE = 5
    CYCLES = 5
    EPOCHS = EPOCHS_PER_CYCLE * CYCLES
    for i in range(CYCLES):
        trainer.trainEpochs(EPOCHS_PER_CYCLE)
        train_errors.append(trainer.testOnData())
        epoch = (i+1) * EPOCHS_PER_CYCLE
        print("\r epoch {}/{}".format(epoch, EPOCHS), end="")
        sys.stdout.flush()
    # save the network
    NetworkWriter.writeToFile(net,'network.xml')
        
    print()
    print("final error =", train_errors[-1])
     
    predicted = []
    for dat in data:
        predicted.append(net.activate(dat)[0])
    # data = min_max_scaler.inverse_transform(data)
    # predicted = min_max_scaler.inverse_transform(predicted)
    predicted_array = min_max_scaler.inverse_transform(np.array(predicted).reshape(-1,1))
    print(predicted_array[-1])
    plt.figure()
     
    legend_actual, = plt.plot(range(0, len(data)),temp, label = 'actual', linestyle = '--', linewidth = 2, c = 'blue')
    legend_predicted, = plt.plot(range(0, len(data)), predicted_array, label = 'predicted', linewidth = 1.5, c='red')
    plt.legend(handles=[legend_actual, legend_predicted])
    plt.savefig('error.png')
    plt.show()
開發者ID:samshara,項目名稱:Stock-Market-Analysis-and-Prediction,代碼行數:70,代碼來源:recurrent.py

示例9: xrange

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]
train_errors_2 = [] 
train_errors_3 = [] 
train_errors_4 = [] 
train_errors_5 = [] 
train_errors_6 = [] 
train_errors_8 = [] 
train_errors_9 = [] 
train_errors_10 = [] 

# Training
EPOCHS_per_CYCLE = 6
NUM_CYCLES = 15
EPOCHS = EPOCHS_per_CYCLE * NUM_CYCLES
for i in xrange(NUM_CYCLES):
    trainer.trainEpochs(EPOCHS_per_CYCLE)
    train_errors.append(trainer.testOnData())
    trainer_2.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_2.append(trainer_2.testOnData()) 
    trainer_3.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_3.append(trainer_3.testOnData())
    trainer_4.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_4.append(trainer_4.testOnData())
    trainer_5.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_5.append(trainer_5.testOnData())
    trainer_6.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_6.append(trainer_6.testOnData())
    trainer_8.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_8.append(trainer_8.testOnData())
    trainer_9.trainEpochs(EPOCHS_per_CYCLE)
    train_errors_9.append(trainer_9.testOnData())
    trainer_10.trainEpochs(EPOCHS_per_CYCLE)
開發者ID:LoicBontempsINSA,項目名稱:LSTM_RNN_Collective_Anomaly_Detection,代碼行數:33,代碼來源:CADTest.py

示例10: learn

# 需要導入模塊: from pybrain.supervised import RPropMinusTrainer [as 別名]
# 或者: from pybrain.supervised.RPropMinusTrainer import testOnData [as 別名]

#.........這裏部分代碼省略.........
                                        self.dictIn["WORD_"+word]=index
                                        index+=1
            self.TOTALSIZEOFSENTENCEFeature=index
            f=open(self.FileNameofNumSentenceFeature,"wb")
            pickle.dump(self.TOTALSIZEOFSENTENCEFeature,f)
            f.close()
        elif self.isUseSentenceRepresentationInsteadofBOW:
            index=0
            for i in range(0,LSTMWithBOWTracker.D2V_VECTORSIZE):
                self.dictIn[str(index)+"thElemPV"]=index
                index+=1
            index=0
            for i in range(0,LSTMWithBOWTracker.D2V_VECTORSIZE):
                self.dictIn[str(index)+"thAvrWord"]=index
                index+=1
            assert self.D2V_VECTORSIZE == LSTMWithBOWTracker.D2V_VECTORSIZE, "D2V_VECTORSIZE is restrected to be same over the class"
        else:
            assert False, "Unexpected block" 
        #--(sub input vector 3) Features M1s defined
        index=0
        if self.isEnableToUseM1sFeature:
            rejisteredFeatures=self.__rejisterM1sInputFeatureLabel(self.tagsets,dataset)
            for rFeature in rejisteredFeatures:
                assert rFeature not in self.dictIn, rFeature +" already registered in input vector. Use different label name. "
                self.dictIn[rFeature]=index
                index+=1
            self.TOTALSIZEOFM1DEFINEDFeature=index
            f=open(self.FileNameofNumM1Feature,"wb")
            pickle.dump(self.TOTALSIZEOFM1DEFINEDFeature,f)
            f.close()

        print "inputSize:"+str(len(self.dictIn.keys()))
        assert self.dictIn["CLASS_INFO"] == 0, "Unexpected index CLASS_INFO should has value 0"
        assert self.dictIn["CLASS_Fort Siloso"] == 334, "Unexpected index CLASS_Fort Siloso should has value 334"
        assert self.dictIn["CLASS_Yunnan"] == 1344, "Unexpected index CLASS_Yunnan should has value 1611"
        #--write 
        fileObject = open('dictInput.pic', 'w')
        pickle.dump(self.dictIn, fileObject)
        fileObject.close()
        fileObject = open('dictOutput.pic', 'w')
        pickle.dump(self.dictOut, fileObject)
        fileObject.close()
        
        #Build RNN frame work
        print "Start learning Network"
        #Capability of network is: (30 hidden units can represents 1048576 relations) wherease (10 hidden units can represents 1024)
        #Same to Henderson (http://www.aclweb.org/anthology/W13-4073)?
        net = buildNetwork(len(self.dictIn.keys()), numberOfHiddenUnit, len(self.dictOut.keys()), hiddenclass=LSTMLayer, outclass=SigmoidLayer, outputbias=False, recurrent=True)
        
        #Train network
        #-convert training data into sequence of vector 
        convDataset=[]#[call][uttr][input,targetvec]
        iuttr=0
        convCall=[]
        for elemDataset in dataset:
            for call in elemDataset:
                for (uttr,label) in call:
                    if self.isIgnoreUtterancesNotRelatedToMainTask:
                        if uttr['segment_info']['target_bio'] == "O":
                            continue
                    #-input
                    convInput=self._translateUtteranceIntoInputVector(uttr,call)
                    #-output
                    convOutput=[0.0]*len(self.dictOut.keys())#Occured:+1, Not occured:0
                    if "frame_label" in label:
                        for slot in label["frame_label"].keys():
                            for value in label["frame_label"][slot]:
                                convOutput[self.dictOut[uttr["segment_info"]["topic"]+"_"+slot+"_"+value]]=1
                    #-post proccess
                    if self.isSeparateDialogIntoSubDialog:
                        if uttr['segment_info']['target_bio'] == "B":
                            if len(convCall) > 0:
                                convDataset.append(convCall)
                            convCall=[]
                    convCall.append([convInput,convOutput])
                    #print "Converted utterance" + str(iuttr)
                    iuttr+=1
                if not self.isSeparateDialogIntoSubDialog:
                    if len(convCall) > 0:
                        convDataset.append(convCall)
                    convCall=[]
        #Online learning
        trainer = RPropMinusTrainer(net,weightdecay=weightdecayw)
        EPOCHS = EPOCHS_PER_CYCLE * CYCLES
        for i in xrange(CYCLES):
            #Shuffle order
            ds = SequentialDataSet(len(self.dictIn.keys()),len(self.dictOut.keys()))
            datInd=range(0,len(convDataset))
            random.shuffle(datInd)#Backpropergation already implemeted data shuffling, however though RpropMinus don't. 
            for ind in datInd:
                ds.newSequence()
                for convuttr in convDataset[ind]:
                    ds.addSample(convuttr[0],convuttr[1])
            #Evaluation and Train
            epoch = (i+1) * EPOCHS_PER_CYCLE
            print "\r epoch {}/{} Error={}".format(epoch, EPOCHS,trainer.testOnData(dataset=ds))
            stdout.flush()
            trainer.trainOnDataset(dataset=ds,epochs=EPOCHS_PER_CYCLE)
            NetworkWriter.writeToFile(trainer.module, "LSTM_"+"Epoche"+str(i+1)+".rnnw")
            NetworkWriter.writeToFile(trainer.module, "LSTM.rnnw")
開發者ID:cuihengbin,項目名稱:Dialogue-State-Tracking-using-LSTM,代碼行數:104,代碼來源:LSTMWithBOW.py


注:本文中的pybrain.supervised.RPropMinusTrainer.testOnData方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。